Citation:
Jia-Qian Ye, Zhen-Lei Zhang, Zheng-Gen Zha, Zhi-Yong Wang. A green and efficient access to aryl nitriles via an electrochemical anodic oxidation[J]. Chinese Chemical Letters,
;2014, 25(8): 1112-1114.
doi:
10.1016/j.cclet.2014.04.024
-
The nitrile functionality is a key building block in synthetic chemistry, and has wide applications in pharmaceuticals. However, traditional methodologies for the synthesis of nitriles are limited to harsh reaction conditions. Herein, we report a new and efficient access to aryl nitriles by an electrochemical synthesis. Compared with the conventional synthetic methods, this electrochemical synthesis is more environmentally friendly and easier to handle.
-
Keywords:
- Eletrochemistry,
- Anodic oxidation,
- Aryl nitrile
-
-
-
[1]
[1] (a) A.J. Fatiadi, Preparation and synthetic applications of cyano compounds, in: S. Patai, Z. Rappoport (Eds.), Triple-Bonded Functional Groups, vol. 2, Wiley, New York, 1983; (b) S. Arseniyadis, K.S. Kyler, D.S. Watt, Addition and substitution reactions of nitrile-stabilized carbanions, in: W.G. Dauben (Ed.), Organic Reactions, Wiley, New York, 1984;(c) R.C. Larock, Comprehensive Organic Transformations, vol. 102, VCH, New York, 1989, pp. 964-965; (d) A. Kleemann, J. Engel, B. Kutscher, D. Reichert, Pharmaceutical Substance, Synthesis, Patents, Applications, 4th ed., Georg Thieme, Stuggart, 2001; (e) J.S. Miller, J.L. Manson, Designer magnets containing cyanides and nitriles, Acc. Chem. Res. 34 (2001) 563-570; (f) M.B. Smith, J. March, March's Advanced Organic Chemistry: Reactions, Mechanisms and Structure, 6th ed., Wiley, Hoboken, NJ, 2007; (g) P. Magnus, D.A. Scott, M.R. Fielding, Direct conversion of α,β-unsaturated nitriles into cyanohydrins using Mn(dpm)3 catalyst, dioxygen and phenylsilane, Tetrahedron Lett. 42 (2001) 4127-4129.
-
[2]
[2] (a) K.W. Rosenmund, E. Struck, Das am Ringkohlenstoff gebundene Halogen und sein Ersatz durch andere Substituenten. I. Mitteilung: Ersatz des Halogens durch die Carboxylgruppe, Ber. Dtsch. Chem. Ges. 2 (1919) 1749-1756; (b) D.F. Mowry, The preparation of nitriles, Chem. Rev. 42 (1948) 189-283; (c) K. Friedrich, K. Wallenfels, The chemistry of the cyano group, in: Z. Rappoport (Ed.), The Chemistry of the Functional Group, Wiley Interscience, New York, 1970, pp. 67-122; (d) J. Lindley, Copper assisted nucleophilic substitution of aryl halogen, Tetrahedron 40 (1984) 1433-1456; (e) P. Kurtz, Houben-Weyl: Methoden der Organischen Chemie, 4th ed., Georg Thieme, Stuttgart, 1952.
-
[3]
[3] (a) T. Schareina, A. Zapf, M. Beller, Potassium hexacyanoferrate(Ⅱ)-a new cyanating agent for the palladium-catalyzed cyanation of aryl halides, Chem. Commun. (2004) 1388-1389; (b) D. Wang, L. Kuang, Z. Li, K. Ding, L-Proline-promoted rosenmund-von braun reaction, Synlett (2008) 69-72; (c) H.J. Cristau, A. Ouali, J.F. Spindler, M. Taillefer, Mild and efficient copper-catalyzed cyanation of aryl iodides and bromides, Chem. Eur. J. 11 (2005) 2483-2492; (d) J. Zanon, A. Klapars, S.L. Buchwald, Copper-catalyzed domino halide exchangecyanation of aryl bromides, J. Am. Chem. Soc. 125 (2003) 2890-2891.
-
[4]
[4] (a) T. Sandmeyer, Ueberführung der drei Nitraniline in die Nitrobenzoësäuren, Ber. Dtsch. Chem. Ges. 18 (1885) 1492-1496; (b) T. Sandmeyer, Ueber die Ersetzung der Amid-gruppe durch Chlor, Brom und Cyan in denaromatischen Substanzen, Ber.Dtsch.Chem.Ges. 17 (1884) 2650-2653.
-
[5]
[5] (a) E. Choi, C. Lee, Y. Na, S. Chang, [RuCl2(p-cymene)]2 on carbon: an efficient, selective, reusable, and environmentally versatile heterogeneous catalyst, Org. Lett. 4 (2002) 2369-2371; (b) K. Yamaguchi, H. Fujiwara, Y. Ogasawara, M. Kotani, N. Mizuno, Inside cover: aerobic oxidation of alcohols at room temperature and atmospheric conditions catalyzed by reusable gold nanoclusters stabilized by the benzene rings of polystyrene derivatives, Angew. Chem. Int. Ed. 46 (2007) 3922-3925.
-
[6]
[6] M. Lamani, K. Prabhu, An efficient oxidation of primary azides catalyzed by copper iodide: a convenient method for the synthesis of nitriles, Angew. Chem. Int. Ed. 49 (2010) 6622-6625.
-
[7]
[7] (a) W. Zhou, L. Zhang, N. Jiao, Direct transformation of methyl arenes to aryl nitriles at room temperature, Angew. Chem. Int. Ed. 48 (2009) 7094-7097; (b) C. Qin, N. Jiao, Iron-facilitated direct oxidative C-H transformation of allylarenes or alkenes to alkenyl nitriles, J. Am. Chem. Soc. 132 (2010) 15893-15895; (c) W. Zhou, J. Xu, L. Zhang, N. Jiao, An efficient transformation from benzyl or allyl halides to aryl and alkenyl nitriles, Org. Lett. 2010 (12) (2010) 2888-2891.
-
[8]
[8] M. Lamani, P. Devadig, K.R. Prabhu, A non-metal catalysed oxidation of primary azides to nitriles atambienttemperature, Org. Biomol. Chem. 10 (2012) 2753-2759.
-
[9]
[9] (a) L. Zhang, H. Chen, Z. Zha, Z.Y. Wang, Electrochemical tandem synthesis of oximes from alcohols using KNO3 as the nitrogen source, Mediated by tin microspheres in aqueous medium, Chem. Commun. 48 (2012) 6574-6576; (b) L. Zhang, J.H. Su, Z. Zha, Z.Y. Wang, Direct electrochemical imidation of aliphatic aminesvia anodic ooxidation, Chem. Commun. 47 (2011) 5488-5490; (c) L. Meng, J.H. Su, Z. Zha, Z.Y. Wang, Direct electrosynthesis of ketones from benzylic methylenes by electrooxidative C-H activation, Chem. Eur. J. 19 (2013) 5542-5545; (d) Z.L. Zhang, J.H. Su, Z. Zha, Z.Y. Wang, A novel approach for the one-pot preparation of α-ketoamides by anodic oxidation, Chem. Commun. 49 (2013) 8982-8984; (e) H.Y. Ma, Z. Zha, Z.Y. Wang, Electrosynthesis of oxadiazoles from benzoylhydrazines, Chin. Chem. Lett. 24 (2013) 780-782.
-
[10]
[10] (a) C.J. Li, Cross-dehydrogenative coupling (CDC): exploring C-C bond formations beyond functional group transformations, Chem. Res. 42 (2009) 280-2891; (b) D.R. Buckle, in: L.A. Paquette (Ed.), Encyclopedia of Reagents for Organic Synthesis, John Wiley & Sons, Chichester, UK, 1995; (c) D. Walker, J.D. Hiebert, 2,3-Dichloro-5,6-dicyanobenzoquinone and its reactions, Chem. Rev. 67 (1967) 153-159; (d) Y.Z. Li, B.J. Li, X.Y. Lu, S. Lin, Z.J. Shi, Cross dehydrogenative arylation (CDA) of a benzylic ch bond with arenes by iron catalysis, Angew. Chem. Int. Ed. 48 (2009) 3817-3820; (e) Y. Zhang, C.J. Li, Highly efficient cross-dehydrogenative-coupling between ethers and active methylene compounds, Angew. Chem. Int. Ed. 45 (2006) 1949-1952.
-
[11]
[11] For selected examples on radical intermediates, see: (a) J.C. Walton, A. Studer, Evolution of functional cyclohexadiene-based synthetic reagents: the importance of becoming aromatic, Acc. Chem. Res. 38 (2005) 794-802; (b) W.P. Liu, Y.M. Li, K.S. Liu, Z.P. Li, Iron-catalyzed carbonylation-peroxidation of alkenes with aldehydes and hydroperoxides, Am. Chem. Soc. 133 (2011) 10756-10759; (c) K. Xu, Y.B. Hu, S. Zhang, Z.G. Zha, Z.Y. Wang, Direct amidation of alcohols with n-substituted formamides under transition-metal-free conditions, Chem. Eur. J. 18 (2012) 9793-9797; (d) K. Xu, Y. Fang, Z.C. Yan, Z.G. Zha, Z.Y. Wang, A highly tunable stereoselective dimerization of methyl ketone: efficient synthesis of E-and Z-1,4-enediones, Org. Lett. 15 (2013) 2148-2151.
-
[12]
[12] (a) S. Lang, J.A. Murphy, Azide rearrangements in electron-deficient systems, Chem. Soc. Rev. 35 (2006) 146-156; (b) M. Sprecher, D. Kost, The Schmidt reaction of dialkyl acylphosphonates, J. Am. Chem. Soc. 116 (1994) 1016-1026; (c) C.E. Katz, J. Aube, Unusual tethering effects in the Schmidt reaction of hydroxyalkyl azides with ketones: cation-π and steric stabilization of a pseudoaxial phenyl group, J. Am. Chem. Soc. 125 (2003) 13948-13949; (d) D.J. Gorin, N.R. Davis, F.D. Toste, Gold(Ⅰ)-catalyzed intramolecular acetylenic Schmidt reaction, J. Am. Chem. Soc. 127 (2005) 11260-11261; (e) L. Yao, J. Aube, Cation-π control of regiochemistry of intramolecular Schmidt reactions en route to bridged bicyclic lactams, J. Am. Chem. Soc. 129 (2007) 2766-2767.
-
[13]
[13] J.P. Richard, T.L. Amyes, Y.G. Lee, V. Jagannadham, Demonstration of the chemical competence of an iminodiazonium ion to serve as the reactive intermediate of a Schmidt reaction, J. Am. Chem. Soc. 116 (1994) 10833-10834.
-
[1]
-
-
-
[1]
Lei Shen , Yang Zhang , Linlin Zhang , Chuanwang Liu , Zhixian Ma , Kangjiang Liang , Chengfeng Xia . Phenylhydrazone anions excitation for the photochemical carbonylation of aryl iodides with aldehydes. Chinese Chemical Letters, 2024, 35(4): 108742-. doi: 10.1016/j.cclet.2023.108742
-
[2]
Xiao-Bo Liu , Ren-Ming Liu , Xiao-Di Bao , Hua-Jian Xu , Qi Zhang , Yu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783
-
[3]
Tian-Yu Gao , Xiao-Yan Mo , Shu-Rong Zhang , Yuan-Xu Jiang , Shu-Ping Luo , Jian-Heng Ye , Da-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364
-
[4]
Junxin Li , Chao Chen , Yuzhen Dong , Jian Lv , Jun-Mei Peng , Yuan-Ye Jiang , Daoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732
-
[5]
Jiajun Lu , Zhehui Liao , Tongxiang Cao , Shifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842
-
[6]
Pengfei Zhang , Qingxue Ma , Zhiwei Jiang , Xiaohua Xu , Zhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361
-
[7]
Jianhui Yin , Wenjing Huang , Changyong Guo , Chao Liu , Fei Gao , Honggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244
-
[8]
Mengxing Liu , Jing Liu , Hongxing Zhang , Jianan Tao , Peiwen Fan , Xin Lv , Wei Guo . One-pot accessing of meso–aryl heptamethine indocyanine NIR fluorophores and potential application in developing dye-antibody conjugate for imaging tumor. Chinese Chemical Letters, 2025, 36(4): 109994-. doi: 10.1016/j.cclet.2024.109994
-
[9]
Wenjing Dai , Lan Luo , Zhen Yin . Interface reconstruction of hybrid oxide electrocatalysts for seawater oxidation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100442-100442. doi: 10.1016/j.cjsc.2024.100442
-
[10]
Gang Hu , Chun Wang , Qinqin Wang , Mingyuan Zhu , Lihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298
-
[11]
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
-
[12]
Yang Yang , Jing-Li Luo , Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269
-
[13]
Gu Gong , Mengzhu Li , Ning Sun , Ting Zhi , Yuhao He , Junan Pan , Yuntao Cai , Longlu Wang . Versatile oxidized variants derived from TMDs by various oxidation strategies and their applications. Chinese Chemical Letters, 2024, 35(6): 108705-. doi: 10.1016/j.cclet.2023.108705
-
[14]
Erzhuo Cheng , Yunyi Li , Wei Yuan , Wei Gong , Yanjun Cai , Yuan Gu , Yong Jiang , Yu Chen , Jingxi Zhang , Guangquan Mo , Bin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386
-
[15]
Zhipeng Wan , Hao Xu , Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298
-
[16]
Huangjie Lu , Yingzhe Du , Peng Lin , Jian Lin . Separation of americium from lanthanides based on oxidation state control. Chinese Journal of Structural Chemistry, 2024, 43(10): 100344-100344. doi: 10.1016/j.cjsc.2024.100344
-
[17]
Xian Yan , Huawei Xie , Gao Wu , Fang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279
-
[18]
Qinwei Lu , Jinjie Lu , Juying Lei , Xubiao Luo , Yanbo Zhou . Cyclodextrin-boosted photocatalytic oxidation for efficient bisphenol A removal. Chinese Chemical Letters, 2025, 36(3): 110017-. doi: 10.1016/j.cclet.2024.110017
-
[19]
Xiaoxue Li , Hongwei Zhou , Rongrong Qian , Xu Zhang , Lei Yu . A concise synthesis of Se/Fe materials for catalytic oxidation reactions of anthracene and polyene. Chinese Chemical Letters, 2025, 36(3): 110036-. doi: 10.1016/j.cclet.2024.110036
-
[20]
Zhiqiang Wang , Yajie Gao , Tianjun Wang , Wei Chen , Zefeng Ren , Xueming Yang , Chuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(744)
- HTML views(11)