Citation: Jia-Qian Ye, Zhen-Lei Zhang, Zheng-Gen Zha, Zhi-Yong Wang. A green and efficient access to aryl nitriles via an electrochemical anodic oxidation[J]. Chinese Chemical Letters, ;2014, 25(8): 1112-1114. doi: 10.1016/j.cclet.2014.04.024 shu

A green and efficient access to aryl nitriles via an electrochemical anodic oxidation

  • Corresponding author: Zheng-Gen Zha,  Zhi-Yong Wang, 
  • Received Date: 3 March 2014
    Available Online: 2 April 2014

    Fund Project: This work was financially supported by the National Natural Science Foundation of China (Nos. 2127222, 91213303, 21172205, J1030412). (Nos. 2127222, 91213303, 21172205, J1030412)

  • The nitrile functionality is a key building block in synthetic chemistry, and has wide applications in pharmaceuticals. However, traditional methodologies for the synthesis of nitriles are limited to harsh reaction conditions. Herein, we report a new and efficient access to aryl nitriles by an electrochemical synthesis. Compared with the conventional synthetic methods, this electrochemical synthesis is more environmentally friendly and easier to handle.
  • 加载中
    1. [1]

      [1] (a) A.J. Fatiadi, Preparation and synthetic applications of cyano compounds, in: S. Patai, Z. Rappoport (Eds.), Triple-Bonded Functional Groups, vol. 2, Wiley, New York, 1983; (b) S. Arseniyadis, K.S. Kyler, D.S. Watt, Addition and substitution reactions of nitrile-stabilized carbanions, in: W.G. Dauben (Ed.), Organic Reactions, Wiley, New York, 1984;(c) R.C. Larock, Comprehensive Organic Transformations, vol. 102, VCH, New York, 1989, pp. 964-965; (d) A. Kleemann, J. Engel, B. Kutscher, D. Reichert, Pharmaceutical Substance, Synthesis, Patents, Applications, 4th ed., Georg Thieme, Stuggart, 2001; (e) J.S. Miller, J.L. Manson, Designer magnets containing cyanides and nitriles, Acc. Chem. Res. 34 (2001) 563-570; (f) M.B. Smith, J. March, March's Advanced Organic Chemistry: Reactions, Mechanisms and Structure, 6th ed., Wiley, Hoboken, NJ, 2007; (g) P. Magnus, D.A. Scott, M.R. Fielding, Direct conversion of α,β-unsaturated nitriles into cyanohydrins using Mn(dpm)3 catalyst, dioxygen and phenylsilane, Tetrahedron Lett. 42 (2001) 4127-4129.

    2. [2]

      [2] (a) K.W. Rosenmund, E. Struck, Das am Ringkohlenstoff gebundene Halogen und sein Ersatz durch andere Substituenten. I. Mitteilung: Ersatz des Halogens durch die Carboxylgruppe, Ber. Dtsch. Chem. Ges. 2 (1919) 1749-1756; (b) D.F. Mowry, The preparation of nitriles, Chem. Rev. 42 (1948) 189-283; (c) K. Friedrich, K. Wallenfels, The chemistry of the cyano group, in: Z. Rappoport (Ed.), The Chemistry of the Functional Group, Wiley Interscience, New York, 1970, pp. 67-122; (d) J. Lindley, Copper assisted nucleophilic substitution of aryl halogen, Tetrahedron 40 (1984) 1433-1456; (e) P. Kurtz, Houben-Weyl: Methoden der Organischen Chemie, 4th ed., Georg Thieme, Stuttgart, 1952.

    3. [3]

      [3] (a) T. Schareina, A. Zapf, M. Beller, Potassium hexacyanoferrate(Ⅱ)-a new cyanating agent for the palladium-catalyzed cyanation of aryl halides, Chem. Commun. (2004) 1388-1389; (b) D. Wang, L. Kuang, Z. Li, K. Ding, L-Proline-promoted rosenmund-von braun reaction, Synlett (2008) 69-72; (c) H.J. Cristau, A. Ouali, J.F. Spindler, M. Taillefer, Mild and efficient copper-catalyzed cyanation of aryl iodides and bromides, Chem. Eur. J. 11 (2005) 2483-2492; (d) J. Zanon, A. Klapars, S.L. Buchwald, Copper-catalyzed domino halide exchangecyanation of aryl bromides, J. Am. Chem. Soc. 125 (2003) 2890-2891.

    4. [4]

      [4] (a) T. Sandmeyer, Ueberführung der drei Nitraniline in die Nitrobenzoësäuren, Ber. Dtsch. Chem. Ges. 18 (1885) 1492-1496; (b) T. Sandmeyer, Ueber die Ersetzung der Amid-gruppe durch Chlor, Brom und Cyan in denaromatischen Substanzen, Ber.Dtsch.Chem.Ges. 17 (1884) 2650-2653.

    5. [5]

      [5] (a) E. Choi, C. Lee, Y. Na, S. Chang, [RuCl2(p-cymene)]2 on carbon: an efficient, selective, reusable, and environmentally versatile heterogeneous catalyst, Org. Lett. 4 (2002) 2369-2371; (b) K. Yamaguchi, H. Fujiwara, Y. Ogasawara, M. Kotani, N. Mizuno, Inside cover: aerobic oxidation of alcohols at room temperature and atmospheric conditions catalyzed by reusable gold nanoclusters stabilized by the benzene rings of polystyrene derivatives, Angew. Chem. Int. Ed. 46 (2007) 3922-3925.

    6. [6]

      [6] M. Lamani, K. Prabhu, An efficient oxidation of primary azides catalyzed by copper iodide: a convenient method for the synthesis of nitriles, Angew. Chem. Int. Ed. 49 (2010) 6622-6625.

    7. [7]

      [7] (a) W. Zhou, L. Zhang, N. Jiao, Direct transformation of methyl arenes to aryl nitriles at room temperature, Angew. Chem. Int. Ed. 48 (2009) 7094-7097; (b) C. Qin, N. Jiao, Iron-facilitated direct oxidative C-H transformation of allylarenes or alkenes to alkenyl nitriles, J. Am. Chem. Soc. 132 (2010) 15893-15895; (c) W. Zhou, J. Xu, L. Zhang, N. Jiao, An efficient transformation from benzyl or allyl halides to aryl and alkenyl nitriles, Org. Lett. 2010 (12) (2010) 2888-2891.

    8. [8]

      [8] M. Lamani, P. Devadig, K.R. Prabhu, A non-metal catalysed oxidation of primary azides to nitriles atambienttemperature, Org. Biomol. Chem. 10 (2012) 2753-2759.

    9. [9]

      [9] (a) L. Zhang, H. Chen, Z. Zha, Z.Y. Wang, Electrochemical tandem synthesis of oximes from alcohols using KNO3 as the nitrogen source, Mediated by tin microspheres in aqueous medium, Chem. Commun. 48 (2012) 6574-6576; (b) L. Zhang, J.H. Su, Z. Zha, Z.Y. Wang, Direct electrochemical imidation of aliphatic aminesvia anodic ooxidation, Chem. Commun. 47 (2011) 5488-5490; (c) L. Meng, J.H. Su, Z. Zha, Z.Y. Wang, Direct electrosynthesis of ketones from benzylic methylenes by electrooxidative C-H activation, Chem. Eur. J. 19 (2013) 5542-5545; (d) Z.L. Zhang, J.H. Su, Z. Zha, Z.Y. Wang, A novel approach for the one-pot preparation of α-ketoamides by anodic oxidation, Chem. Commun. 49 (2013) 8982-8984; (e) H.Y. Ma, Z. Zha, Z.Y. Wang, Electrosynthesis of oxadiazoles from benzoylhydrazines, Chin. Chem. Lett. 24 (2013) 780-782.

    10. [10]

      [10] (a) C.J. Li, Cross-dehydrogenative coupling (CDC): exploring C-C bond formations beyond functional group transformations, Chem. Res. 42 (2009) 280-2891; (b) D.R. Buckle, in: L.A. Paquette (Ed.), Encyclopedia of Reagents for Organic Synthesis, John Wiley & Sons, Chichester, UK, 1995; (c) D. Walker, J.D. Hiebert, 2,3-Dichloro-5,6-dicyanobenzoquinone and its reactions, Chem. Rev. 67 (1967) 153-159; (d) Y.Z. Li, B.J. Li, X.Y. Lu, S. Lin, Z.J. Shi, Cross dehydrogenative arylation (CDA) of a benzylic ch bond with arenes by iron catalysis, Angew. Chem. Int. Ed. 48 (2009) 3817-3820; (e) Y. Zhang, C.J. Li, Highly efficient cross-dehydrogenative-coupling between ethers and active methylene compounds, Angew. Chem. Int. Ed. 45 (2006) 1949-1952.

    11. [11]

      [11] For selected examples on radical intermediates, see: (a) J.C. Walton, A. Studer, Evolution of functional cyclohexadiene-based synthetic reagents: the importance of becoming aromatic, Acc. Chem. Res. 38 (2005) 794-802; (b) W.P. Liu, Y.M. Li, K.S. Liu, Z.P. Li, Iron-catalyzed carbonylation-peroxidation of alkenes with aldehydes and hydroperoxides, Am. Chem. Soc. 133 (2011) 10756-10759; (c) K. Xu, Y.B. Hu, S. Zhang, Z.G. Zha, Z.Y. Wang, Direct amidation of alcohols with n-substituted formamides under transition-metal-free conditions, Chem. Eur. J. 18 (2012) 9793-9797; (d) K. Xu, Y. Fang, Z.C. Yan, Z.G. Zha, Z.Y. Wang, A highly tunable stereoselective dimerization of methyl ketone: efficient synthesis of E-and Z-1,4-enediones, Org. Lett. 15 (2013) 2148-2151.

    12. [12]

      [12] (a) S. Lang, J.A. Murphy, Azide rearrangements in electron-deficient systems, Chem. Soc. Rev. 35 (2006) 146-156; (b) M. Sprecher, D. Kost, The Schmidt reaction of dialkyl acylphosphonates, J. Am. Chem. Soc. 116 (1994) 1016-1026; (c) C.E. Katz, J. Aube, Unusual tethering effects in the Schmidt reaction of hydroxyalkyl azides with ketones: cation-π and steric stabilization of a pseudoaxial phenyl group, J. Am. Chem. Soc. 125 (2003) 13948-13949; (d) D.J. Gorin, N.R. Davis, F.D. Toste, Gold(Ⅰ)-catalyzed intramolecular acetylenic Schmidt reaction, J. Am. Chem. Soc. 127 (2005) 11260-11261; (e) L. Yao, J. Aube, Cation-π control of regiochemistry of intramolecular Schmidt reactions en route to bridged bicyclic lactams, J. Am. Chem. Soc. 129 (2007) 2766-2767.

    13. [13]

      [13] J.P. Richard, T.L. Amyes, Y.G. Lee, V. Jagannadham, Demonstration of the chemical competence of an iminodiazonium ion to serve as the reactive intermediate of a Schmidt reaction, J. Am. Chem. Soc. 116 (1994) 10833-10834.

  • 加载中
    1. [1]

      Lei ShenYang ZhangLinlin ZhangChuanwang LiuZhixian MaKangjiang LiangChengfeng Xia . Phenylhydrazone anions excitation for the photochemical carbonylation of aryl iodides with aldehydes. Chinese Chemical Letters, 2024, 35(4): 108742-. doi: 10.1016/j.cclet.2023.108742

    2. [2]

      Xiao-Bo LiuRen-Ming LiuXiao-Di BaoHua-Jian XuQi ZhangYu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783

    3. [3]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    4. [4]

      Junxin LiChao ChenYuzhen DongJian LvJun-Mei PengYuan-Ye JiangDaoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732

    5. [5]

      Jiajun LuZhehui LiaoTongxiang CaoShifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842

    6. [6]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

    7. [7]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    8. [8]

      Mengxing LiuJing LiuHongxing ZhangJianan TaoPeiwen FanXin LvWei Guo . One-pot accessing of meso–aryl heptamethine indocyanine NIR fluorophores and potential application in developing dye-antibody conjugate for imaging tumor. Chinese Chemical Letters, 2025, 36(4): 109994-. doi: 10.1016/j.cclet.2024.109994

    9. [9]

      Wenjing Dai Lan Luo Zhen Yin . Interface reconstruction of hybrid oxide electrocatalysts for seawater oxidation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100442-100442. doi: 10.1016/j.cjsc.2024.100442

    10. [10]

      Gang HuChun WangQinqin WangMingyuan ZhuLihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298

    11. [11]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    12. [12]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

    13. [13]

      Gu GongMengzhu LiNing SunTing ZhiYuhao HeJunan PanYuntao CaiLonglu Wang . Versatile oxidized variants derived from TMDs by various oxidation strategies and their applications. Chinese Chemical Letters, 2024, 35(6): 108705-. doi: 10.1016/j.cclet.2023.108705

    14. [14]

      Erzhuo ChengYunyi LiWei YuanWei GongYanjun CaiYuan GuYong JiangYu ChenJingxi ZhangGuangquan MoBin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386

    15. [15]

      Zhipeng Wan Hao Xu Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298

    16. [16]

      Huangjie Lu Yingzhe Du Peng Lin Jian Lin . Separation of americium from lanthanides based on oxidation state control. Chinese Journal of Structural Chemistry, 2024, 43(10): 100344-100344. doi: 10.1016/j.cjsc.2024.100344

    17. [17]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    18. [18]

      Qinwei LuJinjie LuJuying LeiXubiao LuoYanbo Zhou . Cyclodextrin-boosted photocatalytic oxidation for efficient bisphenol A removal. Chinese Chemical Letters, 2025, 36(3): 110017-. doi: 10.1016/j.cclet.2024.110017

    19. [19]

      Xiaoxue LiHongwei ZhouRongrong QianXu ZhangLei Yu . A concise synthesis of Se/Fe materials for catalytic oxidation reactions of anthracene and polyene. Chinese Chemical Letters, 2025, 36(3): 110036-. doi: 10.1016/j.cclet.2024.110036

    20. [20]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

Metrics
  • PDF Downloads(0)
  • Abstract views(744)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return