Citation:
Zhi-Jun Wei, Ye-Wei Xu, Lin Zhang, Mei-Ming Luo. Synthesis and thermal polymerization of perylene bisimide containing benzocyclobutene groups[J]. Chinese Chemical Letters,
;2014, 25(10): 1367-1370.
doi:
10.1016/j.cclet.2014.04.022
-
Fourfold benzocyclobutene-functionalized perylene bisimide (PBI 4) has been synthesized and its structure was characterized by FTIR, MS and NMR. PBI 4 can react either with itself, or the appropriate dienophiles to form the corresponding products under appropriate temperature. The polymer film obtained from the reaction of PBI 4 with methyl vinyl silicone rubber possessed excellent film forming properties including flatness. The optical properties of PBI 4 and polymer film obtained from the reaction of PBI 4 and methyl vinyl silicone rubber have been determined by UV/vis and fluorescence spectroscopy.
-
-
-
[1]
[1] A. Hermann, K. Müllen, From industrial colorants to single photon sources and biolabels: the fascination and function of rylene dyes, Chem. Lett. 35 (2006) 978-985.
-
[2]
[2] F. Würthner, Perylene bisimide dyes as versatile building blocks for functional supramolecular architecures, Chem. Commun. 14 (2004) 1564-1579.
-
[3]
[3] C. Backes, F. Hauke, A. Hirsch, The potential of perylene bisimide derivatives for the solubilization of carbon nanotubes and grapheme, Adv. Mater. 23 (2011) 2588-2601.
-
[4]
[4] R.K. Dubey, A. Efimov, H. Lemmetyinen, 1,7-and 1,6-regioisomers of diphenoxy and dipyrrolidinyl substituted perylene diimides: synthesis, separation, characterization, and comparison of electrochemical and optical properties, Chem. Mater. 23 (2011) 778-788.
-
[5]
[5] K. Mahata, P.D. Frischmann, F. Würthner, Giant electroactive M4L6 tetrahedral host self-assembled with Fe(Ⅱ) vertices and perylene bisimide dye edges, J. Am. Chem. Soc. 135 (2013) 15656-15661.
-
[6]
[6] Z. Chen, A. Lohr, C.R. Saha-Möller, F. Würthner, Self-assembled p-stacks of functional dyes in solution: structural and thermodynamic features, Chem. Soc. Rev. 38 (2009) 564-584.
-
[7]
[7] L. Zhang, Y. Xu, F. Zhu, J. Sun, Synthesis and characterization of thermally-stable and soluble perylene bisimide, Asian J. Chem. 22 (2010) 7135-7144.
-
[8]
[8] Y. Shi, H. Qian, Y. Li, W. Yue, Z. Wang, Copper-mediated domino process for the synthesis of tetraiodinated di(perylene bisimide), Org. Lett. 10 (2008) 2337-2340.
-
[9]
[9] C. Zhao, Y. Zhang, R. Li, Y. Li, J. Jiang, Di(alkoxy)-and di(alkylthio)-substituted perylene-3,4;9,10-tetracarboxy diimides with tunable electrochemical and photophysical properties, J. Org. Chem. 72 (2007) 2402-2410.
-
[10]
[10] P. Osswald, F. Würthner, Effects of bay substituents on the racemization barriers of perylene bisimides: resolution of atropo-enantiomers, J. Am. Chem. Soc. 129 (2007) 14319-14326.
-
[11]
[11] Y. Avlasevich, C. Li, K. Müllen, Synthesis and applications of core-enlarged perylene dyes, J. Mater. Chem. 20 (2010) 3814-3826.
-
[12]
[12] L. Feng, Z. Chen, Synthesis and photoluminescent properties of polymer containing perylene and fluorene units, Polymers 46 (2005) 3952-3956.
-
[13]
[13] Y. Liu, C. Yang, Y. Li, et al., Synthesis and photovoltaic characteristics of novel copolymers containing poly(phenylenevinylene) and triphenylamine moieties connected at 1,7 bay positions of perylene bisimide, Macromolecules 38 (2005) 716-721.
-
[14]
[14] G. Boobalan, P.M. Imran, S. Nagarajan, Synthesis of highly fluorescent and water soluble perylene bisimide, Chin. Chem. Lett. 23 (2012) 149-153.
-
[15]
[15] X. He, H. Liu, Y. Li, et al., A new copolymer containing perylene bisimide and porphyrin moieties: synthesis and characterization, Macromol. Chem. Phys. 206 (2005) 2199-2205.
-
[16]
[16] Q. Zhang, A. Cirpan, T.P. Russell, T. Emrick, Donor-acceptor poly(thiophene-blockperylene diimide) copolymers: synthesis and solar cell fabrication, Macromolecules 42 (2009) 1079-1082.
-
[17]
[17] R. Ponnapati, M.J. Felipe, R. Advincula, Electropolymerizable terthiophene-terminated poly(arylether)dendrimers with naphthalene and perylene cores, Macromolecules 44 (2011) 7530-7537.
-
[18]
[18] R. Weegen, P.A. Korevaar, P. Voudouris, et al., Small sized perylene-bisimide assemblies controlled by both cooperative and anti-cooperative assembly processes, Chem. Commun. 49 (2013) 5532-5534.
-
[19]
[19] T. Endo, T. Koizumi, T. Takata, K. chino, Synthesis of poly(4-vinylbenzocyclobutene) and its reaction with dienophiles, J. Polym. Sci. Part A: Polym. Chem. 33 (1995) 707-715.
-
[20]
[20] Y. Kim, J. Pyun, J.M.J. Fréchet, C.J. Hawker, C.W. Frank, The dramatic effect of architecture on the self-assembly of block copolymers at interfaces, Langmuir 21 (2005) 10444-10458.
-
[21]
[21] J.M. Warakomski, W.C. Pike, R.A. Devries, Benzocyclobutenes as styrene monomer scavengers and molecular weight “stabilizers” in atactic and syndiotactic polystyrenes, J. Appl. Polym. Sci. 78 (2000) 2008-2015.
-
[22]
[22] L. Schmidt-Mende, A. Fechtenkötter, K. Müllen, et al., Self-organized discotic liquid crystals for high-efficiency organic photovoltaics, Science 293 (2001) 1119-1122.
-
[23]
[23] C. You, C.R. Saha-Möller, F. Würthner, Synthesis and electropolymerization of novel oligothiophene-functionalized perylene bisimides, Chem. Commun. 18 (2004) 2030-2031.
-
[24]
[24] C.R. Hickenboth, J.S. Moore, S.R. White, et al., Biasing reaction pathways with mechanical force, Nature 446 (2007) 423-427.
-
[25]
[25] E. Harth, B.V. Horn, V.Y. Lee, et al., A facile approach to architecturally defined nanoparticles via intramolecular chain collapse, J. Am. Chem. Soc. 124 (2002) 8653-8660.
-
[26]
[26] X. Zhang, S. Rehm, M.M. Safont-Sempere, F. Würthner, Vesicular perylene dye nanocapsules as supramolecular fluorescent pH sensor systems, Nat. Chem. 1 (2009) 623-629.
-
[27]
[27] W. Qiu, S. Chen, X. Sun, Y. Liu, D. Zhu, Suzuki coupling reaction of 1,6,7,12-tetrabromoperylene bisimide, Org. Lett. 8 (2006) 867-870.
-
[28]
[28] A. Wicklein, A. Lang, M. Muth, M. Thelakkat, Swallow-tail substituted liquid crystalline perylene bisimides: synthesis and thermotropic properties, J. Am. Chem. Soc. 131 (2009) 14442-14453.
-
[29]
[29] H. Wang, H. Su, H. Qian, Z. Wang, A. Xia, Structure-dependent all-optical switching in graphene-nanoribbon-like molecules: fully conjugated tri(perylene bisimides), J. Phys. Chem. 114 (2010) 9130-9135.
-
[30]
[30] M.C.R. Delgado, E.G. Kim, D.A.S. Filho, J.L. Bredas, Tuning the charge-transport parameters of perylene diimide single crystals via end and/or core functionalization: a density functional theory investigation, J. Am. Chem. Soc. 132 (2010) 3375-3387.
-
[1]
-
-
-
[1]
Weiping Guo , Ying Zhu , Hong-Hua Cui , Lingyun Li , Yan Yu , Zhong-Zhen Luo , Zhigang Zou . β-Pb3P2S8: A new optical crystal with exceptional birefringence effect. Chinese Chemical Letters, 2025, 36(2): 110256-. doi: 10.1016/j.cclet.2024.110256
-
[2]
Wenzhong Zhang , Zirui Yan , Lingcheng Chen , Yi Xiao . Sn-fused perylene diimides: Synthesis, mechanism, and properties. Chinese Chemical Letters, 2024, 35(10): 109582-. doi: 10.1016/j.cclet.2024.109582
-
[3]
Chaochao Jin , Kai Li , Jiongpei Zhang , Zhihua Wang , Jiajing Tan . N,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532
-
[4]
Shenhao QIU , Qingquan XIAO , Huazhu TANG , Quan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104
-
[5]
Jaeyong Ahn , Zhenping Li , Zhiwei Wang , Ke Gao , Huagui Zhuo , Wanuk Choi , Gang Chang , Xiaobo Shang , Joon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777
-
[6]
Jiajing Wu , Ru-Ling Tang , Sheng-Ping Guo . Three types of promising functional building units for designing metal halide nonlinear optical crystals. Chinese Journal of Structural Chemistry, 2024, 43(6): 100291-100291. doi: 10.1016/j.cjsc.2024.100291
-
[7]
Yan Wang , Si-Meng Zhai , Peng Luo , Xi-Yan Dong , Jia-Yin Wang , Zhen Han , Shuang-Quan Zang . Vapor- and temperature-triggered reversible optical switching for multi-response Cu8 cluster supercrystals. Chinese Chemical Letters, 2024, 35(11): 109493-. doi: 10.1016/j.cclet.2024.109493
-
[8]
Lihua Gao , Yinglei Han , Chensheng Lin , Huikang Jiang , Guang Peng , Guangsai Yang , Jindong Chen , Ning Ye . Halogen-assisted octet binding electrons construction of pnictogens towards wide-bandgap nonlinear optical pnictides. Chinese Chemical Letters, 2024, 35(12): 109529-. doi: 10.1016/j.cclet.2024.109529
-
[9]
Hongyuan Sha , Dongling Yang , Yanran Shang , Zujian Wang , Rongbing Su , Chao He , Xiaoming Yang , Xifa Long . Trithionic guanidine: A novel semi-organic short-wave ultraviolet nonlinear optical sulfate with dimeric heteroleptic tetrahedra. Chinese Chemical Letters, 2025, 36(4): 109730-. doi: 10.1016/j.cclet.2024.109730
-
[10]
Xiaoyu Chen , Jiahao Hu , Jingyi Lin , Haiyang Huang , Changqing Ye , Hongli Bao . Biisoindolylidene solvatochromic fluorophores: Synthesis and photophysical properties. Chinese Chemical Letters, 2025, 36(2): 109923-. doi: 10.1016/j.cclet.2024.109923
-
[11]
Rongliang Deng , Yihang Chen , Xiaotong Fan , Guolong Chen , Shuli Wang , Changzhi Yu , Xiao Yang , Tingzhu Wu , Zhong Chen , Yue Lin . Break of thermal equilibrium between optical and acoustic phonon branches of CsPbI3 under continuous-wave light excitation and cryogenic temperature. Chinese Chemical Letters, 2024, 35(7): 109346-. doi: 10.1016/j.cclet.2023.109346
-
[12]
Pu Zhang , Xiang Mao , Xuehua Dong , Ling Huang , Liling Cao , Daojiang Gao , Guohong Zou . Two UV organic-inorganic hybrid antimony-based materials with superior optical performance derived from cation-anion synergetic interactions. Chinese Chemical Letters, 2024, 35(9): 109235-. doi: 10.1016/j.cclet.2023.109235
-
[13]
Zhihao Gu , Jiabo Le , Hehe Wei , Zehui Sun , Mahmoud Elsayed Hafez , Wei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849
-
[14]
Rongjian Chen , Jiahui Liu , Caixia Lin , Yuanming Li , Yanhou Geng , Yaofeng Yuan . Synthesis and properties of tetraphenylethene cationic cyclophanes based on o-carborane skeleton. Chinese Chemical Letters, 2024, 35(12): 110074-. doi: 10.1016/j.cclet.2024.110074
-
[15]
Xinyu Liu , Jialin Yang , Zonglin He , Jiaoyan Ai , Lina Song , Baohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236
-
[16]
Shuwen SUN , Gaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368
-
[17]
Yanbing Shen , Yuan Yuan , Yaxin Wang , Xiaonan Ma , Wensheng Yang , Yulan Chen . Dihydroanthracene bridged bis-naphthopyrans: A multimodal chromophore with mechano- and photo-chromic properties. Chinese Chemical Letters, 2024, 35(5): 108949-. doi: 10.1016/j.cclet.2023.108949
-
[18]
Zhengzheng LIU , Pengyun ZHANG , Chengri WANG , Shengli HUANG , Guoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039
-
[19]
Xiaoxia WANG , Ya'nan GUO , Feng SU , Chun HAN , Long SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478
-
[20]
Huirong LIU , Hao XU , Dunru ZHU , Junyong ZHANG , Chunhua GONG , Jingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(692)
- HTML views(24)