Citation: Wei Liu, Li-Ya Han, Rui-Li Liu, Li-Ge Xu, Yan-Lan Bi. Copper-catalyzed N-arylation of 2-arylindoles with aryl halides[J]. Chinese Chemical Letters, ;2014, 25(9): 1240-1243. doi: 10.1016/j.cclet.2014.04.021 shu

Copper-catalyzed N-arylation of 2-arylindoles with aryl halides

  • Corresponding author: Wei Liu, 
  • Received Date: 28 March 2014
    Available Online: 14 April 2014

    Fund Project: This work was supported by the National Natural Science Foundation of China (No. 21102036) (No. 21102036)Plan for Scientific Innovation Talent of Henan University of Technology (No. 11CXRC02) (No. 11CXRC02)startup fund from HAUT (No. 2010BS042). (No. 2010BS042)

  • 10 mol% CuI combined with the DMEDA ligand can efficiently catalyze the N-arylation of 2-arylindoles with aryl iodides and aryl bromides in good to excellent yields. The aryl halides bearing electron-rich or electron-deficient functional groups can be well tolerated under this mild reaction conditions.
  • 加载中
    1. [1]

      [1] S.V. Ley, A.W. Thomas, Modern synthetic methods for copper-mediated C(aryl)-O, C(aryl)-N, and C(aryl)-S bond formation, Angew. Chem. Int. Ed. Engl. 42 (2003) 5400-5449.

    2. [2]

      [2] F. Monnier, M. Taillefer, Catalytic C-C, C-N, and C-O Ullmann-type coupling reactions: copper makes a difference, Angew. Chem. Int. Ed. Engl. 47 (2008) 3096-3099.

    3. [3]

      [3] Y. Wang, J. Zeng, X. Cui, Recent progress in copper-catalyzed C-N coupling reactions, Chin. J. Org. Chem. 30 (2010) 181-199.

    4. [4]

      [4] J.D. Senra, L.C.S. Aguiar, A.B.C. Simas, Recent progress in transition-metal catalyzed C-N cross-couplings: emerging approaches towards sustainability, Curr. Org. Synth. 8 (2011) 53-78.

    5. [5]

      [5] A. Klapars, J.C. Antilla, X. Huang, S.L. Buchwald, A general and efficient copper catalyst for the amidation of aryl halides and the N-arylation of nitrogen heterocycles, J. Am. Chem. Soc. 123 (2001) 7727-7729.

    6. [6]

      [6] J.C. Antilla, A. Klapars, S.L. Buchwald, The copper-catalyzed N-arylation of indoles, J. Am. Chem. Soc. 124 (2002) 11684-11688.

    7. [7]

      [7] A. Klapars, X. Huang, S.L. Buchwald, A general and efficient copper catalyst for the amidation of aryl halides, J. Am. Chem. Soc. 124 (2002) 7421-7428.

    8. [8]

      [8] H. Cristau, P.P. Cellier, J. Spindler, M. Taillefer, Highly efficient and mild coppercatalyzed N-and C-arylations with aryl bromides and iodides, Chem. Eur. J. 10 (2004) 5607-5622.

    9. [9]

      [9] X. Diao, Y. Wang, Y. Jiang, D. Ma, Assembly of substituted 1H-benzimidazoles and 1,3-dihydrobenzimidazol-2-ones via CuI/L-proline catalyzed coupling of aqueous ammonia with 2-iodoacetanilides and 2-iodophenylcarbamates, J. Org. Chem. 74 (2009) 7974-7977.

    10. [10]

      [10] R.K. Rao, A.B. Naidu, E.A. Jaseer, G. Sekar, An efficient, mild, and selective Ullmanntype N-arylation of indoles catalyzed by copper(I) complex, Tetrahedron 65 (2009) 4619-4624.

    11. [11]

      [11] A.K. Verma, J. Singh, R.C. Larock, Benzotriazole: an efficient ligand for the copper-catalyzed N-arylation of indoles, Tetrahedron 65 (2009) 8434-8439.

    12. [12]

      [12] S. Haneda, Y. Adachi, M. Hayashi, Copper(I)-2-(20-pyridyl)benzimidazole catalyzed N-arylation of indoles, Tetrahedron 65 (2009) 10459-10462.

    13. [13]

      [13] X. Yang, H. Xing, Y. Zhang, et al., CuI/8-hydroxyquinalidine promoted N-arylation of indole and azoles, Chin. J. Chem. 30 (2012) 875-880.

    14. [14]

      [14] F. Wu, P. Liu, X. Ma, J. Xie, B. Dai, Tetrazole-1-acetic acid as a ligand for coppercatalyzed N-arylation of imidazoles with aryl iodides under mild conditions, Chin. Chem. Lett. 24 (2013) 893-896.

    15. [15]

      [15] J. Engel-Andreasen, B. Shimpukade, T. Ulven, Selective copper catalysed aromatic N-arylation in water, Green Chem. 15 (2013) 336-340.

    16. [16]

      [16] L.B. Zhu, L. Cheng, Y.X. Zhang, R.G. Xie, J.S. You, Highly efficient copper-catalyzed N-arylation of nitrogen-containing heterocycles with aryl and heteroaryl halides, J. Org. Chem. 72 (2007) 2737-2743.

    17. [17]

      [17] L.B. Zhu, G.C. Li, L. Luo, et al., Highly functional group tolerance in coppercatalyzed N-arylation of nitrogen-containing heterocycles under mild conditions, J. Org. Chem. 74 (2009) 2200-2202.

    18. [18]

      [18] N. Panda, A.K. Jena, S. Mohapatra, S.R. Rout, Copper ferrite nanoparticle-mediated N-arylation of heterocycles: a ligand-free reaction, Tetrahedron Lett. 52 (2011) 1924-1927.

    19. [19]

      [19] N.V. Suramwar, S.R. Thakare, N.N. Karade, N.T. Khaty, Green synthesis of predominant (1 1 1) facet CuO nanoparticles: heterogeneous and recyclable catalyst for N-arylation of indoles, J. Mol. Cat. A: Chem. 359 (2012) 28-34.

    20. [20]

      [20] F.P. Yi, H.Y. Sun, X.H. Pan, Y. Xu, J.Z. Li, Synthesis of Fischer indole derivatives using carboxyl-functionalized ionic liquid as an efficient and recyclable catalyst, Chin. Chem. Lett. 20 (2009) 275-278.

    21. [21]

      [21] S.V. Goswami, P.B. Thorat, V.N. Kadam, S.A. Khiste, S.R. Bhusare, A convenient one-pot three component synthesis of 3-aminoalkylated indoles catalyzed by 3-chlorophenylboronic acid, Chin. Chem. Lett. 24 (2013) 422-424.

    22. [22]

      [22] W.J. Smith III, J.S. Sawyer, A novel and selective method for the N-arylation of indoles mediated by KF/Al2O3, Tetrahedron Lett. 37 (1996) 299-302.

    23. [23]

      [23] G.L. Frayne, G.M. Green, Investigation of the N-arylation of various substituted indoles using microwave-assisted technology, Tetrahedron Lett. 49 (2008) 7328-7329.

    24. [24]

      [24] Z.W. Chen, N. Zhang, Z.H. Wang, W.K. Su, An efficient synthesis of novel chromeno[3'4':5,6]pyrano[2,3-b]indole derivatives, Chin. Chem. Lett. 24 (2013) 199-201.

    25. [25]

      [25] Y.X. Cui, L.D. Sun, Q. Sun, L. Shi, Highly selective synthesis of 3-methylindole from glycerol and aniline over Cu/NaY modified by K22O, Chin. Chem. Lett. 24 (2013) 1127-1129.

    26. [26]

      [26] L. Ackermann, General and efficient indole syntheses based on catalytic amination reactions, Org. Lett. 7 (2005) 439-442.

    27. [27]

      [27] L.T. Kaspar, L. Ackermann, Three-component indole synthesis using ortho-dihaloarenes, Tetrahedron 61 (2005) 11311-11316.

    28. [28]

      [28] N.P. Bizier, J.W. Wackerly, E.D. Braunstein, et al., An alternative role for acetylenes: activation of fluorobenzenes toward nucleophilic aromatic substitution, J. Org. Chem. 78 (2013) 5987-5998.

  • 加载中
    1. [1]

      Liangfeng YangLiang ZengYanping ZhuQiuan WangJinheng Li . Copper-catalyzed photoredox 1,4-amidocyanation of 1,3-enynes with N-amidopyridin-1-ium salts and TMSCN: Facile access to α-amido allenyl nitriles. Chinese Chemical Letters, 2024, 35(11): 109685-. doi: 10.1016/j.cclet.2024.109685

    2. [2]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

    3. [3]

      Xiao-Bo LiuRen-Ming LiuXiao-Di BaoHua-Jian XuQi ZhangYu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783

    4. [4]

      Mengmeng AoJian WeiChuan-Shu HeHeng ZhangZhaokun XiongYonghui SongBo Lai . Insight into the activation of peroxymonosulfate by N-doped copper-based carbon for efficient degradation of organic pollutants: Synergy of nonradicals. Chinese Chemical Letters, 2025, 36(1): 109882-. doi: 10.1016/j.cclet.2024.109882

    5. [5]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    6. [6]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    7. [7]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    8. [8]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    9. [9]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    10. [10]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    11. [11]

      Haiyang Gu Xiang Xu . Multicolor hybrid metal halides and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(9): 100352-100352. doi: 10.1016/j.cjsc.2024.100352

    12. [12]

      Guoliang Liu Zhiqiang Liu Anmin Zheng . Modulation of zeolite surface realizes dynamic copper species redispersion. Chinese Journal of Structural Chemistry, 2024, 43(6): 100308-100308. doi: 10.1016/j.cjsc.2024.100308

    13. [13]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

    14. [14]

      Ting HuYuxuan GuoYixuan MengZe ZhangJi YuJianxin CaiZhenyu Yang . Uniform lithium deposition induced by copper phthalocyanine additive for durable lithium anode in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108603-. doi: 10.1016/j.cclet.2023.108603

    15. [15]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    16. [16]

      Jing-Qi TaoShuai LiuTian-Yu ZhangHong XinXu YangXin-Hua DuanLi-Na Guo . Photoinduced copper-catalyzed alkoxyl radical-triggered ring-expansion/aminocarbonylation cascade. Chinese Chemical Letters, 2024, 35(6): 109263-. doi: 10.1016/j.cclet.2023.109263

    17. [17]

      Pingping WangHuixian MiaoKechuan ShengBin WangFan FengXuankun CaiWei HuangDayu Wu . Efficient blue-light-excitable copper(Ⅰ) coordination network phosphors for high-performance white LEDs. Chinese Chemical Letters, 2024, 35(4): 108600-. doi: 10.1016/j.cclet.2023.108600

    18. [18]

      Ling FangSha WangShun LuFengjun YinYujie DaiLin ChangHong Liu . Efficient electroreduction of nitrate via enriched active phases on copper-cobalt oxides. Chinese Chemical Letters, 2024, 35(4): 108864-. doi: 10.1016/j.cclet.2023.108864

    19. [19]

      Xiaotao JinYanlan WangYingping HuangDi HuangXiang Liu . Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism. Chinese Chemical Letters, 2024, 35(10): 109499-. doi: 10.1016/j.cclet.2024.109499

    20. [20]

      Fengxing LiangYongzheng ZhuNannan WangMeiping ZhuHuibing HeYanqiu ZhuPeikang ShenJinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461

Metrics
  • PDF Downloads(0)
  • Abstract views(677)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return