Citation: Qing-Han Li, Yong Ding, Xue-Jun Yang. Nickel-catalyzed cross-coupling reaction of alkynyl bromides with Grignard reagents[J]. Chinese Chemical Letters, ;2014, 25(9): 1296-1300. doi: 10.1016/j.cclet.2014.04.019 shu

Nickel-catalyzed cross-coupling reaction of alkynyl bromides with Grignard reagents

  • Corresponding author: Qing-Han Li, 
  • Received Date: 31 January 2014
    Available Online: 4 April 2014

    Fund Project: This work was financially supported by the Fundamental Research Funds for the Central Universities, Southwest University for Nationalities (No. 12NZYTH03) (No. 12NZYTH03) and the Project of Postgraduate Degree Construction, Southwest University for Nationalities (No. 2013XWD-S0703) (No. 381010)

  • We describe a convenient method for the synthesis of 1,2-disubstituted acetylenes via a cross-coupling reaction of (bromoethynyl)benzene with Grignard reagents. The reaction of (bromoethynyl)benzene (1 mmol) with Grignard reagent (1.3 mmol) mediated by NiCl2 (4 mol%) and (p-CH3Ph)3P (8 mol%) in THF could produce 1,2-disubstituted acetylenes in good yields at room temperature.
  • 加载中
    1. [1]

      [1] J.B. Johnson, T. Rovis, More than bystanders: the effect of olefins on transitionmetal-catalyzed cross-coupling reactions, Angew. Chem. Int. Ed. 47 (2008) 840-871.

    2. [2]

      [2] D.G. Yu, Z.J. Shi, Mutual activation: Suzuki-Miyaura coupling through direct cleavage of the sp2 C-O bond of naphtholate, Angew. Chem. Int. Ed. 50 (2011) 7079-7100.

    3. [3]

      [3] J.J. Hirner, S.A. Blum, Nickel-catalyzed cross-coupling of organogold reagents, Organometallics 30 (2011) 1299-1302.

    4. [4]

      [4] M.A. Greene, I.M. Yonova, F.J. Williams, E.R. Jarvo, Traceless directing group for stereospecific nickel-catalyzed alkyl-alkyl cross-coupling reactions, Org. Lett. 14 (2012) 4293-4296.

    5. [5]

      [5] X.Q. Zhang, Z.X. Wang, Amido pincer nickel catalyzed Kumada cross-coupling of aryl, heteroaryl, and vinyl chlorides, Synlett 24 (2013) 2081-2084.

    6. [6]

      [6] D.A. Everson, J.A. Buonomo, D.J. Weix, Nickel-catalyzed cross-electrophile coupling of 2-chloropyridines with alkyl bromides, Synlett 25 (2014) 233-238.

    7. [7]

      [7] K. Sonogashira, Y. Tohda, N. Hagihara, A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines, Tetrahedron Lett. 50 (1975) 4467-4470.

    8. [8]

      [8] R. Chinchilla, C. Nájera, The Sonogashira reaction: a booming methodology in synthetic organic chemistry, Chem. Rev. 107 (2007) 874-922.

    9. [9]

      [9] E.M. Beccalli, G. Broggini, M. Martinelli, S. Sottocornola, C-C, C-O, C-N bond formation on sp2 carbon by Pd(II)-catalyzed reactions involving oxidant agents, Chem. Rev. 107 (2007) 5318-5365.

    10. [10]

      [10] D. Doucet, J.C. Hierso, Palladium-based catalytic systems for the synthesis of conjugated enynes by Sonogashira reactions and related alkynylations, Angew. Chem. Int. Ed. 46 (2007) 834-871.

    11. [11]

      [11] H. Plenio, Catalysts for the Sonogashira coupling -the crownless again shall be king, Angew. Chem. Int. Ed. 47 (2008) 6954-6956.

    12. [12]

      [12] M.M. Heravi, S. Sadjadi, Recent advances in the application of the Sonogashira method in the synthesis of heterocyclic compounds, Tetrahedron 65 (2009) 7761-7775.

    13. [13]

      [13] K.C. Nicolaou, W.M. Dai, Chemistry and biology of the enediyne anticancer antibiotics, Angew. Chem. Int. Ed. 30 (1991) 1387-1416.

    14. [14]

      [14] J.W. Grissom, G.U. Gunawardena, D. Klingberg, D.H. Huang, The chemistry of enediynes, enyne allenes and related compounds, Tetrahedron 52 (1996) 6453-6518.

    15. [15]

      [15] T. Haro, C. Nevado, Gold-catalyzed ethynylation of arenes, J. Am. Chem. Soc. 132 (2010) 1512-1513.

    16. [16]

      [16] B. Panda, T.K. Sarkar, On the catalytic duo PdCl2(PPh3)2/AuCl(PPh3) that cannot effect a Sonogashira-type reaction: a correction, Tetrahedron Lett. 51 (2010) 301-305.

    17. [17]

      [17] M. Carril, A. Correa, C. Bolm, Iron-catalyzed Sonogashira reactions, Angew. Chem. Int. Ed. 47 (2008) 4862-4865.

    18. [18]

      [18] L. Brandsma, S.F. Vasilevsky, H.D. Verkruijsse, Application of Transition Metal Catalysts in Organic Synthesis, Springer-Verlag, Berlin, 1988, pp. 179-225.

    19. [19]

      [19] K.C. Nicolau, E.J. Sorensen, Classics in Total Synthesis, Wiley-VCH, Weinheim, 1996, pp. 582-586.

    20. [20]

      [20] U.H.F. Bunz, Poly(aryleneethynylene)s: syntheses, properties, structures, and applications, Chem. Rev. 100 (2000) 1605-1644.

    21. [21]

      [21] L.M. Tan, Z.Y. Sem, W.Y. Chong, et al., Continuous flow Sonogashira C-C coupling using a heterogeneous palladium-copper dual reactor, Org. Lett. 15 (2013) 65-67.

    22. [22]

      [22] R. Ciriminna, V. Pandarus, G. Gingras, et al., Heterogeneous Sonogashira coupling over nanostructured SiliaCat Pd(0), ACS Sustainable Chem. Eng. 1 (2013) 57-61.

    23. [23]

      [23] D.S. Yang, B. Li, H.J. Yang, H. Fu, L.I. Hu, Efficient copper-catalyzed Sonogashira couplings of aryl halides with terminal alkynes in water, Synlett 5 (2011) 702-706.

    24. [24]

      [24] T. Suzuka, Y. Okada, K. Ooshiro, Y. Uozumi, Copper-free Sonogashira coupling in water with an amphiphilic resin-supported palladium complex, Tetrahedron 66 (2010) 1064-1069.

    25. [25]

      [25] R. Severin, J. Reimer, S. Doye, One-pot procedure for the synthesis of unsymmetrical diarylalkynes, J. Org. Chem. 75 (2010) 3518-3521.

    26. [26]

      [26] Y.S. Feng, Z.Q. Xu, L. Mao, F.F. Zhang, H.J. Xu, Copper catalyzed decarboxylative alkynylation of quaternary α-cyano acetate salts, Org. Lett. 15 (2013) 1472-1475.

    27. [27]

      [27] S.H. Wang, L. Yu, P.H. Li, L.G. Meng, L. Wang, Copper(I) iodide catalyzed crosscoupling reaction of terminal alkynes with 1-bromoalkynes: a simple synthesis of unsymmetrical buta-1,3-diynes, Synthesis 10 (2011) 1541-1546.

    28. [28]

      [28] K. Tsuyoshi, M. Nato, H. Koji, S. Tetsuya, M. Masahiro, Room temperature direct alkynylation of 1,3,4-oxadiazoles with alkynyl bromides under copper catalysis, J. Org. Chem. 75 (2010) 1764-1766.

    29. [29]

      [29] M. Nato, H. Koji, S. Tetsuya, M. Masahiro, Nickel-catalyzed direct alkynylation of azoles with alkynyl bromides, Org. Lett. 11 (2009) 4156-4159.

    30. [30]

      [30] J. Breitenfeld, J. Ruiz, M.D. Wodrich, X.L. Hu, Bimetallic oxidative addition involving radical intermediates in nickel-catalyzed alkyl-alkyl Kumada coupling reactions, J. Am. Chem. Soc. 135 (2013) 12004-12012.

    31. [31]

      [31] Q.H. Li, H.M. Gau, Synthesis of allenes via nickel-catalyzed cross-coupling reaction of propargylic bromide with Grignard reagent, Synlett 23 (2012) 747-750.

    32. [32]

      [32] A.M. Lauer, F. Mahmud, J.M. Wu, Cu(I)-catalyzed, α-selective, allylic alkylation reactions between phosphorothioate esters and organomagnesium reagents, J. Am. Chem. Soc. 133 (2011) 9119-9123.

    33. [33]

      [33] G. Cahiez, O. Gager, J. Buendia, Copper-catalyzed cross-coupling of alkyl and aryl Grignard reagents with alkynyl halides, Angew. Chem. Int. Ed. 49 (2010) 1278-1281.

    34. [34]

      [34] D. Castagnolo, M. Botta, Iron-Catalyzed Cross-Coupling between 1-Bromoalkynes and Grignard-Derived Organocuprate Reagents, Eur. J.Org.Chem. 17 (2010) 3224-3228.

    35. [35]

      [35] H. Hofmeister, K. Annen, H. Laurent, R. Wiechert, A novel entry to 17a-bromoand 17a-iodoethynyl steroids, Angew. Chem. Int. Ed. Engl. 23 (1984) 727-729.

    36. [36]

      [36] A.D. Finke, E.C. Elleby, M.J. Boyd, H. Weissman, J.S. Moore, Zinc chloride-promoted aryl bromide-alkyne cross-coupling reactions at room temperature, J. Org. Chem. 74 (2009) 8897-8900.

    37. [37]

      [37] J. Moon, M. Jeong, H. Nam, et al., One-pot synthesis of diarylalkynes using palladium-catalyzed Sonogashira reaction and decarboxylative coupling of sp carbon and sp2 carbon, Org. Lett. 10 (2008) 945-948.

    38. [38]

      [38] X.F. Wu, H. Neumann, M. Beller, Palladium-catalyzed Sonogashira reactions of aryl amines with alkynes via in situ formation of arenediazonium salts, Chem. Commun. 47 (2011) 7959-7961.

  • 加载中
    1. [1]

      Fuyang YueMingxing LiFei YuanHongjian SongYuxiu LiuQingmin Wang . Deboronative cross-coupling enabled by nickel metallaphotoredox catalysis. Chinese Chemical Letters, 2025, 36(12): 111053-. doi: 10.1016/j.cclet.2025.111053

    2. [2]

      Zhirong YangShan WangMing JiangGengchen LiLong LiFangzhi PengZhihui Shao . One stone three birds: Ni-catalyzed asymmetric allenylic substitution of allenic ethers, hydroalkylation of 1,3-enynes and double alkylation of enynyl ethers. Chinese Chemical Letters, 2024, 35(8): 109518-. doi: 10.1016/j.cclet.2024.109518

    3. [3]

      Peng GuoShicheng DongXiang-Gui ZhangBing-Bin YangJun ZhuKe-Yin Ye . Cobalt-catalyzed migratory carbon-carbon cross-coupling of borabicyclo[3.3.1]nonane (9-BBN) borates. Chinese Chemical Letters, 2025, 36(4): 110052-. doi: 10.1016/j.cclet.2024.110052

    4. [4]

      Jiangping Chen Hongju Ren Kai Wu Huihuang Fang Chongqi Chen Li Lin Yu Luo Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236

    5. [5]

      Jialin HuangLiying FuZhanyong TangXiaoqiang MaXingda ZhaoDepeng Zhao . Cross-coupling of trifluoromethylarenes with alkynes C(sp)-H bonds and azoles C(sp2)-H bonds via photoredox/copper dual catalysis. Chinese Chemical Letters, 2025, 36(7): 110505-. doi: 10.1016/j.cclet.2024.110505

    6. [6]

      Zhenkang AiHui ChenXuebin Liao . Nickel-catalyzed decarboxylative difluoromethylation and alkylation of alkenes. Chinese Chemical Letters, 2025, 36(3): 109954-. doi: 10.1016/j.cclet.2024.109954

    7. [7]

      Xiao-Bo LiuRen-Ming LiuXiao-Di BaoHua-Jian XuQi ZhangYu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783

    8. [8]

      Shaobin HeXiaoyun GuoQionghua ZhengHuanran ShenYuan XuFenglin LinJincheng ChenHaohua DengYiming ZengWei Chen . Engineering nickel-supported osmium bimetallic nanozymes with specifically improved peroxidase-like activity for immunoassay. Chinese Chemical Letters, 2025, 36(4): 110096-. doi: 10.1016/j.cclet.2024.110096

    9. [9]

      Xinghao CaiChen MaYing KangYuqiang RenXue MengWei LuShiming FanShouxin Liu . Nickel-catalyzed C(sp2)–H alkynylation of free α-substituted benzylamines using a transient directing group. Chinese Chemical Letters, 2025, 36(10): 110901-. doi: 10.1016/j.cclet.2025.110901

    10. [10]

      Yixiao ZhaoGavin Chit TsuiQilong Shen . Key intermediates in Cu to Cu catalytic cycle for ethoxycarbonyl difluoro- methylation. Chinese Chemical Letters, 2025, 36(12): 111051-. doi: 10.1016/j.cclet.2025.111051

    11. [11]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    12. [12]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    13. [13]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    14. [14]

      Yuhan LiuJingyang ZhangGongming YangJian Wang . Highly enantioselective carbene-catalyzed δ-lactonization via radical relay cross-coupling. Chinese Chemical Letters, 2025, 36(1): 109790-. doi: 10.1016/j.cclet.2024.109790

    15. [15]

      Jiyang LiuXiangzhang TaoZhenlei ZouJia XuHui ShuYi PanWeigang ZhangShengyang NiYi Wang . Modular and practical synthesis of gem-difluoroalkenes via consecutive Ni-catalyzed reductive cross-coupling. Chinese Chemical Letters, 2025, 36(7): 110461-. doi: 10.1016/j.cclet.2024.110461

    16. [16]

      Qinghong ZhangQiao ZhaoXiaodi WuLi WangKairui ShenYuchen HuaCheng GaoYu ZhangMei PengKai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167

    17. [17]

      Junxin LiChao ChenYuzhen DongJian LvJun-Mei PengYuan-Ye JiangDaoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732

    18. [18]

      Yanfen PENGXinyue WANGTianbao LIUXiaoshuo WUYujing WEI . Syntheses and luminescence of four Cd(Ⅱ)/Zn(Ⅱ) complexes constructed by 1,3‐bis(4H‐1,2,4‐triazole)benzene. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1416-1426. doi: 10.11862/CJIC.20250018

    19. [19]

      Ze-Yuan MaMei XiaoCheng-Kun LiAdedamola ShoberuJian-Ping ZouS-(1,3-Dioxoisoindolin-2-yl)O,O-diethyl phosphorothioate (SDDP): A practical electrophilic reagent for the phosphorothiolation of electron-rich compounds. Chinese Chemical Letters, 2024, 35(5): 109076-. doi: 10.1016/j.cclet.2023.109076

    20. [20]

      Jingfeng YueZhenxin TangYuxing ZhangZhongbao Jian . Oligomeric α-diimine nickel catalysts for enhanced ethylene polymerization. Chinese Chemical Letters, 2026, 37(1): 111930-. doi: 10.1016/j.cclet.2025.111930

Metrics
  • PDF Downloads(0)
  • Abstract views(1446)
  • HTML views(42)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return