Citation:
Xin-Yi Jiang, Xiu-Hua Xu, Feng-Ling Qing. Design and concise synthesis of gem-difluoromethylenated analogue of 7-epi-castanospermine[J]. Chinese Chemical Letters,
;2014, 25(8): 1115-1120.
doi:
10.1016/j.cclet.2014.04.018
-
A novel gem-difluoromethylenated castanospermine analogue B was designed and synthesized, starting from 3-bromo-3,3-difluoropropene and L-(-)-malic acid. The key steps involve substitution cyclization reaction and RCM reaction to construct the aza fused bicyclic framework.
-
-
-
[1]
[1] (a) J.P. Michael, Indolizidine and quinolizidine alkaloids, Nat. Prod. Rep. 24 (2007) 191-222; (b) J.P. Michael, Indolizidine and quinolizidine alkaloids, Nat. Prod. Rep. 25 (2008) 139-165.
-
[2]
[2] (a) I. Pastuszak, R.J. Molyneux, L.F. James, A.D. Elbein, Lentiginosine, a dihydroxyindolizidine alkaloid that inhibits amyloglucosidase, Biochemistry 29 (1990) 1886-1891; (b) A. Brandi, S. Cicchi, F.M. Cordero, et al., Assignment of the absolute configuration of natural lentiginosine by synthesis and enzymic assays of optically pure (+) and (-)-enantiomers, J. Org. Chem. 60 (1995) 6806-6812.
-
[3]
[3] (a) M.J. Schneider, F.S. Ungemach, H.P. Broquist, T.M. Harris, (1S 2R,8R,8aR)-1,2,8-Trihydroxyoctahydroindolizine (swainsonine), an α-mannosidase inhibitor from Rhizoctonia leguminicola, Tetrahedron 39 (1983) 29-32; (b) G.P. Kaushal, T. Szumilo, I. Pastuszak, A.D. Elbein, Purification to homogeneity and properties of mannosidase II from mung bean seedlings, Biochemistry 29 (1990) 2168-2176.
-
[4]
[4] (a) L.D. Hohenschutz, E.A. Bell, P.J. Jewess, et al., Castanospermine, A 1 6,7,8-tetrahydroxyoctahydroindolizine alkaloid, from seeds of Castanospermum austral, Phytochemistry 20 (1981) 811-814; (b) R.J. Nash, L.E. Fellows, J.V. Dring, et al., Castanospermine in Alexa species, Phytochemistry 27 (1988) 1403-1404.
-
[5]
[5] (a) R. Saul, J.P. Chambers, R.J. Molyneux, A.D. Elbein, Castanospermine, a tetrahydroxylated alkaloid that inhibits β-glucosidase and β-glucocerebrosidase, Arch. Biochem. Biophys. 211 (1983) 593-597; (b) G. Trugnan, M. Rousset, A. Zweibaum, Castanospermine: a potent inhibitor of sucrase from the human enterocyte-like cell line Caco-2, FEBS Lett. 195 (1986) 28-32; (c) B.C. Campbell, R.J. Molyneux, K.C. Jones, Differential inhibition by castanospermine of various insect disaccharidases, J. Chem. Ecol. 13 (1987) 1759-1770; (d) A.M. Scofield, J.T. Rossiter, P. Witham, et al., Inhibition of thioglucosidasecatalysed glucosinolate hydrolysis by castanospermine and related alkaloids, Phytochemistry 29 (1990) 107-109; (e) A.P. Valaitis, D.F. Bowers, Purification and properties of the soluble midgut trehalase from the gypsy moth, Lymantria dispar, Insect Biochem. Mol. Biol. 23 (1993) 599-606.
-
[6]
[6] (a) H. Nojima, I. Kimura, F.J. Chen, et al., Antihyperglycemic effects of N-containing sugars from Xanthocercis zambesiaca, Morus bombycis, Aglaonema treubii, and Castanospermum australe in Streptozotocin-Diabetic Mice, J. Nat. Prod. 61 (1998) 397-400; (b) R. Pili, J. Chang, R.A. Partis, et al., The α-glucosidase I inhibitor castanospermine alters endothelial cell glycosylation, prevents angiogenesis, and inhibits tumor growth, Cancer Res. 55 (1995) 2920-2926; (c) S.Walter, K. Fassbender, E. Gulbins, et al., Glycosylation processing inhibition by castanospermine prevents experimental autoimmune encephalomyelitis by interference with IL-2 receptor signal transduction, J. Neuroimmunol. 132 (2002) 1-10; (d) E. De Clercq, Current lead natural products for the chemotherapy of human immunodeficiency virus (HIV) infection, Med. Res. Rev. 20 (2000) 323-349; (e) P.M. Grochowicz, A.D. Hibberd, Y.C. Smart, et al., Castanospermine, an oligosaccharide processing inhibitor, reduces membrane expression of adhesion molecules and prolongs heart allograft survival in rats, Transpl. Immunol. 4 (1996) 275-285.
-
[7]
[7] (a) T. Machan, A.S. Davis, B. Liawruangrath, S.G. Pyne, Synthesis of castanospermine, Tetrahedron 64 (2008) 2725-2732; (b) T. Jensen, M. Mikkelsen, A. Lauritsen, et al., A concise synthesis of castanospermine by the use of a transannular cyclization, J. Org. Chem. 74 (2009) 8886-8889; (c) J. Ceccon, G. Danoun, A.E. Greene, J.F. Poisson, Asymmetric synthesis of (+)-castanospermine through enol ether metathesis-hydroboration/oxidation, Org. Biomol. Chem. 7 (2009) 2029-2031; (d) G. Liu, T.J. Wu, Y.P. Ruan, P.Q. Huang, Asymmetric total syntheses of (+)-castanospermine, (+)-7-deoxy-6-epi-castanospermine, and (+)-1-epi-castanospermine, Chem, Eur. J. 16 (2010) 5755-5768; (e) E.G. Bowen, D.J. Wardrop, Diastereoselective nitrenium ion-mediated cyclofunctionalization: total synthesis of (+)-castanospermine, Org. Lett. 12 (2010) 5330-5333.
-
[8]
[8] (a) J. Louvel, C. Botuha, F. Chemla, et al., Asymmetric total synthesis of (+)-6-epicastanospermine by the stereoselective formation of a syn, anti acetylenic 2-amino-1,3-diol stereotriad, Eur. J. Org. Chem. (2010) 2921-2926; (b) N.B. Kalamkar, V.G. Puranik, D.D. Dhavale, Synthesis of C1-and C8a-epimers of (+)-castanospermine from d-glucose derived g,d-epoxyazide: intramolecular 5-endo epoxide opening approach, Tetrahedron 67 (2011) 2773-2778; (c) P.R. Sultane, A.R. Mohite, R.G. Bhat, Total synthesis of 1-deoxy-7 8a-di-epicastanospermine and formal synthesis of pumiliotoxin-251D, Tetrahedron 53 (2012) 5856-5858; (d) H. Yun, J. Kim, J. Sim, et al., Asymmetric syntheses of 1-deoxy-6, 8a-di-epicastanospermine and 1-deoxy-6-epi-castanospermine, J. Org. Chem. 77 (2012) 5389-5393; (e) A.T. Serafidou, E.G. Yioti, J.K. Gallos, A protection-free synthetic access to (±)-1-deoxy-6-epi-castanospermine and (±)-1-deoxy-6 8a-di-epi-castanospermine, Eur. J. Org. Chem. (2013) 939-943.
-
[9]
[9] R.H. Furneaux, G.J. Gainsford, J.M. Mason, et al., The chemistry of castanospermine, part V: synthetic modifications at C-1 and C-7, Tetrahedron 53 (1997) 245-268.
-
[10]
[10] R.W. Wang, X.L. Qiu, M. Bols, O.C. Fernando, F.L. Qing, Synthesis and biological evaluation of glycosidase inhibitors: gem-difluoromethylenated nojirimycin analogues, J. Med. Chem. 49 (2006) 2989-2997.
-
[11]
[11] (a) R.W. Wang, F.L. Qing, Highly stereocontrolled synthesis of gem-difluoromethylenated azasugars: D-and L-1,4,6-trideoxy-4,4-difluoronojirimycin, Org. Lett. 7 (2005) 2189-2192; (b) R.J. Li, M. Bols, C. Rousseau, et al., Synthesis and biological evaluation of potent glycosidase inhibitors: 4-deoxy-4,4-difluoroisofagomine and analogues, Tetrahedron 65 (2009) 3717-3727; (c) R.W. Wang, J. Xu, O. Lopez, M. Bols, F.L. Qing, Difluoromethylenated polyhydroxylated pyrrolidines: facile synthesis, crystal structure and biological evaluation, Future Med. Chem. 1 (2009) 991-997; (d) Y. Yang, F. Zheng, M. Bols, L.G. Marinescu, F.L. Qing, Synthesis of monofluorinated isofagomine analogues and evaluation as glycosidase inhibitors, J. Fluorine Chem. 132 (2011) 838-845.
-
[12]
[12] G.E. Keck, M.B. Andrus, D.R. Romer, A useful new enantiomerically pure synthon from malic acid: chelation controlled activation as a route to regioselectivity, J. Org. Chem. 56 (1991) 417-420.
-
[13]
[13] (a) H.C. Kolb, M.S. VanNieuwenhze, K.B. Sharpless, Catalytic asymmetric dihydroxylation, Chem. Rev. 94 (1994) 2483-2547; (b) Z.X. Jiang, Y.Y. Qin, F.L. Qing, Asymmetric synthesis of both enantiomers of anti-4,4,4-trifluorothreonine and 2-amino-4,4,4-trifluorobutanoic acid, J. Org. Chem. 68 (2003) 7544-7547.
-
[14]
[14] S.G. Hentges, K.B. Sharpless, Asymmetric induction in the reaction of osmium tetroxide with olefins, J. Am. Chem. Soc. 102 (1980) 4263-4265.
-
[15]
[15] K. Burgess, L.D. Jennings, Enantioselective esterifications of unsaturated alcohols mediated by a lipase prepared from Pseudomonas sp, J. Am. Chem. Soc. 113 (1991) 6129-6139.
-
[16]
[16] (a) Z.W. You, Y.Y. Wu, F.L. Qing, Synthesis of gem-difluoromethylenated massoialactone by ring-closing metathesis, Tetrahedron Lett. 45 (2004) 9479-9481; (b) Z.W. You, X. Zhang, F.L. Qing, Stereocontrolled synthesis of gem-difluoromethylenated goniodiols and goniothalamin epoxides based on ring-closing metathesis, Synthesis (2006) 2535-2542.
-
[1]
-
-
-
[1]
Chunhua Ma , Mengjiao Liu , Siyu Ouyang , Zhenwei Cui , Jingjing Bi , Yuqin Jiang , Zhiguo Zhang . Metal-free construction of diverse 1,2,4-triazolo[1,5-a]pyridines on water. Chinese Chemical Letters, 2025, 36(1): 109755-. doi: 10.1016/j.cclet.2024.109755
-
[2]
Yaping Zhang , Wei Zhou , Mingchun Gao , Tianqi Liu , Bingxin Liu , Chang-Hua Ding , Bin Xu . Oxidative cyclization of allyl compounds and isocyanide: A facile entry to polysubstituted 2-cyanopyrroles. Chinese Chemical Letters, 2024, 35(4): 108836-. doi: 10.1016/j.cclet.2023.108836
-
[3]
Yi-Fan Wang , Hao-Yun Yu , Hao Xu , Ya-Jie Wang , Xiaodi Yang , Yu-Hui Wang , Ping Tian , Guo-Qiang Lin . Rhodium(Ⅲ)-catalyzed diastereo- and enantioselective hydrosilylation/cyclization reaction of cyclohexadienone-tethered α, β-unsaturated aldehydes. Chinese Chemical Letters, 2024, 35(9): 109520-. doi: 10.1016/j.cclet.2024.109520
-
[4]
Xinghui Yao , Zhouyu Wang , Da-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916
-
[5]
Ke Zhang , Sheng Zuo , Pengyuan You , Tong Ru , Fen-Er Chen . Palladium-catalyzed stereoselective decarboxylative [4 + 2] cyclization of 2-methylidenetrimethylene carbonates with pyrrolidone-derived enones: Straightforward access to chiral tetrahydropyran-fused spiro-pyrrolidine-2,3-diones. Chinese Chemical Letters, 2024, 35(6): 109157-. doi: 10.1016/j.cclet.2023.109157
-
[6]
Zhiwei Chen , Heyun Sheng , Xue Li , Menghan Chen , Xin Li , Qiuling Song . Efficient capture of difluorocarbene by pyridinium 1,4-zwitterionic thiolates: A concise synthesis of difluoromethylene-containing 1,4-thiazine derivatives. Chinese Chemical Letters, 2024, 35(4): 108937-. doi: 10.1016/j.cclet.2023.108937
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(667)
- HTML views(2)