Citation: Jie Huang, Di Wu, Hao-Jie Ge, Sheng-Hua Liu, Jun Yin. Fluorinated 1,8-naphthalimides:Synthesis, solid structure and properties[J]. Chinese Chemical Letters, ;2014, 25(10): 1399-1402. doi: 10.1016/j.cclet.2014.04.017 shu

Fluorinated 1,8-naphthalimides:Synthesis, solid structure and properties

  • Corresponding author: Jun Yin, 
  • Received Date: 28 January 2014
    Available Online: 11 April 2014

    Fund Project: We acknowledge financial support from National Natural Science Foundation of China (Nos. 21072070, 21272088) (Nos. 21072070, 21272088)the Program for Academic Leader in Wuhan Municipality (No. 201271130441). The work was also supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, Ministry of Education, the Natural Science Foundation of Hubei Province (No. 2013CFB207) (No. 201271130441)Excellent doctorial dissertation cultivation grant from Central China Normal University (No. 2013YBYB60). (No. 2013YBYB60)

  • Three fluorinated 1,8-napthalimides were synthesized from acenaphthene. Their structures were characterized by NMR and EI-MS analyses. The structures of compounds 1b and 1c were also confirmed by X-ray diffraction analysis, which showed that they possessed different packing models. Their optoelectronic properties were investigated. The results indicated that all of the naphthalimides possess good solubility and low LUMO energy level, which make them good solution processing candidates in n-type semiconductor.
  • 加载中
    1. [1]

      [1] H. Usta, A. Facchetti, T.J. Marks, N-channel semiconductor materials design for organic complementary circuits, Acc. Chem. Res. 44 (2011) 501-510.

    2. [2]

      [2] K.Y. Hua, C.M. Deng, C. He, et al., Organic semiconductors-coated polyacrylonitrile (PAN) electrospun nanofibrous mats for highly sensitive chemosensors via evanescent-wave guiding effect, Chin. Chem. Lett. 24 (2013) 643-646.

    3. [3]

      [3] C. Zhan, Y.Y. Jiang, M.Y. Yang, L.H. Lu, S.Q. Xiao, Synthesis and optoelectronic properties of a novel molecular semiconductor of dithieno[5,6-b:11,12-b0] coronene-2,3,8,9-tetracarboxylic tetraester, Chin. Chem. Lett. 25 (2014) 65-68.

    4. [4]

      [4] C. Di, F. Zhang, D. Zhu, Multi-functional integration of organic field-effect transistors (OFETs): advances and perspectives, Adv. Mater. 25 (2013) 313-330.

    5. [5]

      [5] A.N. Sokolov, B.C.K. Tee, C.J. Bettinger, J.B.H. Tok, Z.N. Bao, Chemical and engineering approaches to enable organic field-effect transistors for electronic skin applications, Acc. Chem. Res. 45 (2012) 361-371.

    6. [6]

      [6] Z. Bao, Materials and fabrication needs for low-cost organic transistor circuits, Adv. Mater. 12 (2000) 227-230.

    7. [7]

      [7] Y.L. Lee, H.L. Hsu, S.Y. Chen, T.R. Yew, Solution-processed naphthalene diimide derivatives as n-type semiconductor materials, J. Phys. Chem. C 112 (2008) 1694-1699.

    8. [8]

      [8] C.R. Newman, C.D. Frisbie, D.A. da Silva Filho, et al., Introduction to organic thin film transistors and design of n-channel organic semiconductors, Chem. Mater. 16 (2004) 4436-4451.

    9. [9]

      [9] Y. Li, L. Tan, Z. Wang, et al., Air-stable n-type semiconductor: core-perfluoroalky-lated perylenebisimides, Org. Lett. 10 (2008) 529-532.

    10. [10]

      [10] C. Wang, H. Dong, W. Hu, Y. Liu, D. Zhu, Semiconducting p-conjugated systems in field-effect transistors: a material odyssey of organic electronics, Chem. Rev. 112 (2012) 2208-2267.

    11. [11]

      [11] J.L. Brédas, A.J. Heeger, Influence of donor and acceptor substituents on the electronic characteristics of poly(paraphenylene vinylene) and poly(paraphenylene), Chem. Phys. Lett. 217 (1994) 507-512.

    12. [12]

      [12] F. Babudri, G.M. Farinola, F. Naso, R. Raqni, Fluorinated organic materials for electronic and optoelectronic applications: the role of the fluorine atom, Chem. Commun. (2007) 1003-1022.

    13. [13]

      [13] H. Ge, X. Li, D. Wu, et al., Donor-acceptor naphthylimide: synthesis and properties, Mol. Cryst. Liq. Cryst. 582 (2013) 109-114.

    14. [14]

      [14] M. Tesmer, H. Vahrenkamp, Sterically fixed dithiolate ligands and their zinc complexes: derivatives of 1,8-dimercaptonaphthalene, Eur. J. Inorg. Chem. 2001 (2001) 1183-1188.

    15. [15]

      [15] C. Chi, G. Wegner, Chain-length dependence of the electrochemical properties of conjugated oligofluorenes, Macromol. Rapid Commun. 26 (2005) 1532-1537.

    16. [16]

      [16] S. Erten-Ela, S. Ozcelik, E. Eren, Synthesis and photophysical characterizations of thermal-stable naphthalene benzimidazoles, J. Fluoresc. 21 (2011) 1565-1573.

    17. [17]

      [17] L. Jing, H. Dong, W. Hu, Organic single crystal field-effect transistors: advances and perspectives, J. Mater. Chem. 20 (2010) 4994-5007.

  • 加载中
    1. [1]

      Tingting HuangZhuanlong DingHao LiuPing-An ChenLongfeng ZhaoYuanyuan HuYifan YaoKun YangZebing Zeng . Electron-transporting boron-doped polycyclic aromatic hydrocarbons: Facile synthesis and heteroatom doping positions-modulated optoelectronic properties. Chinese Chemical Letters, 2024, 35(4): 109117-. doi: 10.1016/j.cclet.2023.109117

    2. [2]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    3. [3]

      Xiaxia LIUXiaofang MALuxia GUOXianda HANSisi FENG . Structure and magnetic properties of Mn(Ⅱ) coordination polymers regulated by N-auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 587-596. doi: 10.11862/CJIC.20240269

    4. [4]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

    5. [5]

      Long TANGYaxin BIANLuyuan CHENXiangyang HOUXiao WANGJijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180

    6. [6]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

    7. [7]

      Dake LiuShuyan LiuFanlei HuZhongtang LiZhongjun LiN-Glycosylated type Ⅱ collagen peptides as therapeutic saccharide vaccines for rheumatoid arthritis. Chinese Chemical Letters, 2024, 35(5): 108762-. doi: 10.1016/j.cclet.2023.108762

    8. [8]

      Xiaoyu ChenJiahao HuJingyi LinHaiyang HuangChangqing YeHongli Bao . Biisoindolylidene solvatochromic fluorophores: Synthesis and photophysical properties. Chinese Chemical Letters, 2025, 36(2): 109923-. doi: 10.1016/j.cclet.2024.109923

    9. [9]

      Zhijie ZhangXun LiHuiling TangJunhao WuChunxia YaoKui Li . Cs2CuBr4 perovskite quantum dots confined in mesoporous CuO framework as a p-n type S-scheme heterojunction for efficient CO2 photoconversion. Chinese Chemical Letters, 2024, 35(11): 109700-. doi: 10.1016/j.cclet.2024.109700

    10. [10]

      Zhihao GuJiabo LeHehe WeiZehui SunMahmoud Elsayed HafezWei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849

    11. [11]

      Wenzhong ZhangZirui YanLingcheng ChenYi Xiao . Sn-fused perylene diimides: Synthesis, mechanism, and properties. Chinese Chemical Letters, 2024, 35(10): 109582-. doi: 10.1016/j.cclet.2024.109582

    12. [12]

      Rongjian ChenJiahui LiuCaixia LinYuanming LiYanhou GengYaofeng Yuan . Synthesis and properties of tetraphenylethene cationic cyclophanes based on o-carborane skeleton. Chinese Chemical Letters, 2024, 35(12): 110074-. doi: 10.1016/j.cclet.2024.110074

    13. [13]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    14. [14]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    15. [15]

      Xin HeFeng LiuTao Tu . Double redox-mediated intrinsic semiconductor photocatalysis: Practical semi-heterogeneous synthesis. Chinese Chemical Letters, 2025, 36(3): 110621-. doi: 10.1016/j.cclet.2024.110621

    16. [16]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    17. [17]

      Yanbing ShenYuan YuanYaxin WangXiaonan MaWensheng YangYulan Chen . Dihydroanthracene bridged bis-naphthopyrans: A multimodal chromophore with mechano- and photo-chromic properties. Chinese Chemical Letters, 2024, 35(5): 108949-. doi: 10.1016/j.cclet.2023.108949

    18. [18]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    19. [19]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    20. [20]

      Haohao SunWenxuan WangYuli XiongZelang JianWen Chen . Boosting the electrochromic properties by large V2O5 nanobelts interlayer spacing tuned via PEDOT. Chinese Chemical Letters, 2024, 35(9): 109213-. doi: 10.1016/j.cclet.2023.109213

Metrics
  • PDF Downloads(0)
  • Abstract views(861)
  • HTML views(76)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return