Citation: Tayyebeh Madrakian, Sara Heidari. Interaction of benzene-1,3-disulfonylamid-kriptofix[22] with iodine in chloroform and dichloromethane solutions[J]. Chinese Chemical Letters, ;2014, 25(10): 1375-1378. doi: 10.1016/j.cclet.2014.04.015 shu

Interaction of benzene-1,3-disulfonylamid-kriptofix[22] with iodine in chloroform and dichloromethane solutions

  • Corresponding author: Tayyebeh Madrakian, 
  • Received Date: 2 January 2014
    Available Online: 8 April 2014

  • The interaction of iodine as an s-acceptor with a synthetic ligand, benzene-1,3-disulfonylamid-kriptofix [22] (BDSAK) as a p-donor has been investigated spectrophotometrically in chloroform (CHCl3) and dichloromethane (DCM) solutions. The results of mole ratio plots and Job's method show the stoichiometry of complexation I2/BDSAK is 1:1. Stability constants have been calculated in various temperatures and thermodynamic parameters have also been determined from the temperatures dependence of the stability constants by using van't Hoff equation. The results indicate the iodine complex with BDSAK is enthalpy stabilized but entropy destabilized.
  • 加载中
    1. [1]

      [1] H.B. Hassib, Y.M. Issa, Conductimetric studies of charge transfer complexes of some benzylidene aniline schiff bases with substituted p-benzoquinones, Egypt, J. Chem. 39 (1996) 329-338.

    2. [2]

      [2] R.S. Mulliken, Molecular compounds and their spectra. III. The interaction of electron donors and acceptors, Phys. Chem. 56 (1952) 801-822.

    3. [3]

      [3] K. Brueggermann, R.S. Czernuszewicz, J.K. Kochi, Charge-transfer structures of aromatic electron donor-acceptor complexes with titanium tetrachloride. Ground-state and excited-state spectroscopy for redox processes, Phys. Chem. 96 (1992) 4405-4414.

    4. [4]

      [4] M. Goes, J.W. Verhoeven, H. Hofstraat, K. Brunner, OLED and PLED devices employing electrogenerated, intramolecular charge-transfer fluorescence, Chem. Phys. Chem. 4 (2003) 349-358.

    5. [5]

      [5] A. Eyehmuller, A.L. Rogach, Chemistry and photophysics of thiol-stabilized II-VI semiconductor nanocrystals, Pure Appl. Chem. 72 (2000) 179-188.

    6. [6]

      [6] R. Dabestani, K.J. Reszka, M.E. Sigman, Surface catalyzed electron transfer from polycyclic aromatic hydrocarbons (PAH) to methyl viologen dication: evidence for ground-state charge transfer complex formation on silica gel, J. Photochem. Photobiol. A 117 (1998) 223-226.

    7. [7]

      [7] S.Y. AlQaradawi, E.L.M. Nour, Synthesis and spectroscopic structural studies of the adducts formed in the reaction of aminopyridines with TCNQ, J. Mol. Struct. 794 (2006) 251-254.

    8. [8]

      [8] K. Wang, D.S. Guo, M.Y. Zhao, Y. Liu, A supramolecular vesicle based on the complexation of p-sulfonatocalixarene with protamine and its trypsin-triggered controllable-release properties, Chem. Eur. J. (2014), http://dx.doi.org/10.1002/ chem.201303963.

    9. [9]

      [9] X. He, B. Xu, Y.Q. Liu, Y.Q. Yang, W.J. Tian, Effect of intramolecular charge transfer on the two-photon absorption behavior of multibranched triphenylamine derivations, J. Appl. Phys. 111 (2012) 053516-153516.

    10. [10]

      [10] X.Y. Shen, W.Z. Yuan, Y. Liu, et al., Fumaronitrile-based fluorogen: red to near-infrared fluorescence, aggregation-induced emission, solvatochromism, and twisted intramolecular charge transfer, J. Phys. Chem. 116 (2012) 10541-10547.

    11. [11]

      [11] M.J.S. Dewar, A.R. Lepley, π-Complexes. I. Charge transfer spectra of π-complexes formed by trinitrobenzene with polycyclic aromatic compounds, J. Am. Chem. Soc. 83 (1961) 4560-4563.

    12. [12]

      [12] A. Afkhami, T. Madrakian, H. Tahmasebi, H. Keypour, H. Khanmohammadi, Interaction of new polyamine ligand N,N,N',N'-tetrakis(2-salicylideneaminoethyl) butane-1,4-diamine with iodine in chloroform and dichloromethane solutions, Phys. Chem. Liq. 46 (2008) 372-378.

    13. [13]

      [13] T. Madrakian, M. Mohammadnejad, F. Hojati, Investigation of electron donoracceptor complex formation between morpholine and 2,4,6-trimorpholino-1,3,5-triazin with iodine in two solvents with soft-modeling approaches, J. Mol. Struct. 968 (2010) 1-5.

    14. [14]

      [14] M. Torabbeigi, T. Madrakian, A. Afkhami, Kinetic study of charge transfer complexes of ICl3 with DB18C6 and DC18C6 in some nonaqueous solvents, J. Incl. Phenom. Macrocycl. Chem. 67 (2010) 127-132.

    15. [15]

      [15] A. Ghaderi, M.S. Thesis, The Synthesis of Quinolines under Green Conditions, Faculty of Chemistry. Bu-Ali Sina University, Hamedan, Iran, 2010.

    16. [16]

      [16] L.J. Andrew, E.S. Prochaska, A. Loewenschuss, Resonance Raman and ultraviolet absorption spectra of the triiodide ion produced by alkali iodide-iodine argon matrix reactions, Inorg. Chem. 19 (1980) 463-465.

    17. [17]

      [17] M. Mizuno, J. Tanaka, I. Harada, Electronic spectra and structures of polyiodide chain complexes, J. Phys. Chem. 85 (1981) 1789-1794.

    18. [18]

      [18] A. Semnani, M. Shamsipur, Spectrophotometric study of the complexation of iodine with macrocycles in chloroform solution, J. Chem. Soc. Dalton Trans. 11 (1996) 2215-2218.

    19. [19]

      [19] W. Likussar, D.F. Bolts, Theory of continuous variations plots and a new method for spectrophotometric determination of extraction and formation constants, J. Anal. Chem. 43 (1971) 1265-1272.

    20. [20]

      [20] V.A. Nicely, J.L. Dye, A general purpose curve fitting program for class and research use, J. Chem. Educ. 48 (1971) 443.

    21. [21]

      [21] V. Gutmann, Coordination Chemistry in Nonaqueous Solvents, Springer-Verlag, Vienna, 1968.

    22. [22]

      [22] A. Cipiciani, S. Satini, G. Saveth, Molecular complexes between substituted indoles and tetracyanoethylene, J. Chem. Soc. Faraday Trans. 1 75 (1979) 497-502.

    23. [23]

      [23] A.M. Nour-el-Din, Charge-transfer complexes between beteroaromatic N-oxides and π-acceptors, Spectrochim. Acta A 41 (1985) 1101-1104.

    24. [24]

      [24] I.M.M. Carvalho, M.H. Gehelan, The solvent effect on electronic energy transfer between excited [Ru(bpy)3]2+ donor and aromatic acceptors, J. Photochem. Photobiol. Chem. A 122 (1999) 109-113.

  • 加载中
    1. [1]

      Lin Ding Jinpeng Zhang Junfeng Li Daying Liu . Color Catcher: A Marvelous Encounter of Starch and Iodine. University Chemistry, 2024, 39(6): 334-341. doi: 10.3866/PKU.DXHX202311064

    2. [2]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    3. [3]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    4. [4]

      Zhongbin Pan Shijie Huang Yunjie Luo Hongzhen Xie . Design of a Comprehensive Experiment for Determining Permanganate Index (CODMn) in Drinking Water. University Chemistry, 2024, 39(7): 354-360. doi: 10.12461/PKU.DXHX202311040

    5. [5]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    6. [6]

      Yuan TengZichun ZhouJinghua ChenSiying HuangHongyan ChenDaibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430

    7. [7]

      Pengcheng SuShizheng ChenZhihong YangNingning ZhongChenzi JiangWanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357

    8. [8]

      Yajun HouChuanzheng ZhuQiang WangXiaomeng ZhaoKun LuoZongshuai GongZhihao Yuan . ~2.5 nm pores in carbon-based cathode promise better zinc-iodine batteries. Chinese Chemical Letters, 2024, 35(5): 108697-. doi: 10.1016/j.cclet.2023.108697

    9. [9]

      Xinyi CaoYucheng JinHailong WangXu DingXiaolin LiuBaoqiu YuXiaoning ZhanJianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201

    10. [10]

      Dongying FuLin PanYanli MaYue Zhang . Bilayered Dion–Jacobson lead-iodine hybrid perovskite with aromatic spacer for broadband photodetection. Chinese Chemical Letters, 2025, 36(2): 109621-. doi: 10.1016/j.cclet.2024.109621

    11. [11]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    12. [12]

      Yihu Ke Shuai Wang Fei Jin Guangbo Liu Zhiliang Jin Noritatsu Tsubaki . Charge transfer optimization: Role of Cu-graphdiyne/NiCoMoO4 S-scheme heterojunction and Ohmic junction. Chinese Journal of Structural Chemistry, 2024, 43(12): 100458-100458. doi: 10.1016/j.cjsc.2024.100458

    13. [13]

      Xiaoyao MaJinling ZhangGe FangHe GaoJie GaoLi FuYuanyuan HouGang Bai . Förster resonance energy transfer reveals phillygenin and swertiamarin concurrently target AKT on different binding domains to increase the anti-inflammatory effect. Chinese Chemical Letters, 2024, 35(5): 108823-. doi: 10.1016/j.cclet.2023.108823

    14. [14]

      Jieqiong XuWenbin ChenShengkai LiQian ChenTao WangYadong ShiShengyong DengMingde LiPeifa WeiZhuo Chen . Organic stoichiometric cocrystals with a subtle balance of charge-transfer degree and molecular stacking towards high-efficiency NIR photothermal conversion. Chinese Chemical Letters, 2024, 35(10): 109808-. doi: 10.1016/j.cclet.2024.109808

    15. [15]

      Xiao YuDongyue CuiMengmeng WangZhaojin WangMengzhu WangDeshuang TuVladimir BregadzeChangsheng LuQiang ZhaoRunfeng ChenHong Yan . Boron cluster-based TADF emitter via through-space charge transfer enabling efficient orange-red electroluminescence. Chinese Chemical Letters, 2025, 36(3): 110520-. doi: 10.1016/j.cclet.2024.110520

    16. [16]

      Boyuan HuJian ZhangYulin YangYayu DongJiaqi WangWei WangKaifeng LinDebin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933

    17. [17]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

    18. [18]

      Ying HouZhen LiuXiaoyan LiuZhiwei SunZenan WangHong LiuWeijia Zhou . Laser constructed vacancy-rich TiO2-x/Ti microfiber via enhanced interfacial charge transfer for operando extraction-SERS sensing. Chinese Chemical Letters, 2024, 35(9): 109634-. doi: 10.1016/j.cclet.2024.109634

    19. [19]

      Hui LiuXiangyang TangZhuang ChengYin HuYan YanYangze XuZihan SuFutong LiuPing Lu . Constructing multifunctional deep-blue emitters with weak charge transfer excited state for high-performance non-doped blue OLEDs and single-emissive-layer hybrid white OLEDs. Chinese Chemical Letters, 2024, 35(10): 109809-. doi: 10.1016/j.cclet.2024.109809

    20. [20]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

Metrics
  • PDF Downloads(0)
  • Abstract views(666)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return