Citation: Weifei Zhang, Xuexia Lin, Hai-Fang Li, Zhihua Wang, Jin-Ming Lin. Determination of polybrominated diphenyl ethers in river water by combination of liquid-liquid extraction and gas chromatography-mass spectrometry[J]. Chinese Chemical Letters, ;2014, 25(9): 1225-1229. doi: 10.1016/j.cclet.2014.04.014 shu

Determination of polybrominated diphenyl ethers in river water by combination of liquid-liquid extraction and gas chromatography-mass spectrometry

  • Corresponding author: Jin-Ming Lin, 
  • Received Date: 25 February 2014
    Available Online: 9 April 2014

  • In this work, a reliable and sensitive method for detecting polybrominated diphenyl ethers (PBDEs) has been developed by the combination of liquid-liquid extraction and gas chromatography-mass spectrometry. PBDEs were extracted from a large volume of water by liquid-liquid extraction and purified by silica gel chromatography. In order to reduce the deviation, dibromobiphenyl was exploited as the internal standard to minimize differences among the injections. The quantification was performed using an external standard. Good linear correlation coefficients (>0.991) and a wide linearity range (1.0-500.0 ng/L) indicated the steadiness of the proposed method. Moreover, the satisfactory recovery (>75%) suggested that successful determination of PBDEs in river water had been achieved. Furthermore, the deduction behavior of PBDEs in river water could be inferred according to the results.
  • 加载中
    1. [1]

      [1] N. Kajiwara, H. Takigami, Emission behavior of hexabromocyclododecanes and polybrominated diphenyl ethers from flame-retardant-treated textiles, Environ. Sci. 15 (2013) 1957-1963.

    2. [2]

      [2] S. Siddique, Q.M. Xian, N. Abdelouahab, et al., Levels of dechlorane plus and polybrominated diphenylethers in human milk in two Canadian cities, Environ. Int. 39 (2012) 50-55.

    3. [3]

      [3] J. Muñoz-Arnanz, M. Sáez, J.I. Aguirre, et al., Predominance of BDE-209 and other higher brominated diphenyl ethers in eggs of white stork (Ciconia ciconia) colonies from Spain, Environ. Int. 37 (2011) 572-576.

    4. [4]

      [4] Y. Kang, H.S. Wang, K.C. Cheung, M.H. Wong, Polybrominated diphenyl ethers (PBDEs) in indoor dust and human hair, Atmos. Environ. 45 (2011) 2386-2393.

    5. [5]

      [5] Y. Li, T.Wang,Y. Hashi, H. Li, J.M. Lin, Determination of brominatedflameretardants in electrical and electronic equipments with microwave-assisted extraction and gas chromatography-mass spectrometry, Talanta 78 (2009) 1429-1435.

    6. [6]

      [6] J.P. Boon, W.E. Lewis, M.R. Tjoen-A-Choy, et al., Levels of polybrominated diphenyl ether (PBDE) flame retardants in animals representing different trophic levels of the North Sea food web, Environ. Sci. Technol. 36 (2002) 4025-4032.

    7. [7]

      [7] A. Besis, C. Samara, Polybrominated diphenyl ethers (PBDEs) in the indoor and outdoor environments -a review on occurrence and human exposure, Environ. Pollut. 169 (2012) 217-229.

    8. [8]

      [8] A. Covaci, S. Harrad, M.A.-E. Abdallah, et al., Novel brominated flame retardants: a review of their analysis, environmental fate and behaviour, Environ. Int. 37 (2011) 532-556.

    9. [9]

      [9] X. Lin, H.F. Li, X. He, et al., Automated online pretreatment and cleanup recycle coupled with high-performance liquid chromatography-mass spectrometry for determination of deca-bromodiphenyl ether in human serum, J. Sep. Sci. 35 (2012) 2553-2558.

    10. [10]

      [10] J.L. Domingo, Polybrominated diphenyl ethers in food and human dietary exposure: a review of the recent scientific literature, Food Chem. Toxicol. 50 (2012) 238-249.

    11. [11]

      [11] L.G. Costa, R. de Laat, S. Tagliaferri, C. Pellacani, A mechanistic view of polybrominated diphenyl ether (PBDE) developmental neurotoxicity, Toxicol. Lett. 378 (2013) 1413-1417.

    12. [12]

      [12] N. Xiang, X. Zhao, X.Z. Meng, L. Chen, Polybrominated diphenyl ethers (PBDEs) in a conventional wastewater treatment plant (WWTP) from Shanghai, the Yangtze River Delta: implication for input source and mass loading, Sci. Total Environ. 461-462 (2013) 391-396.

    13. [13]

      [13] H.B. Moon, M. Choi, J. Yu, R.H. Jung, H.G. Choi, Contamination and potential sources of polybrominated diphenyl ethers (PBDEs) in water and sediment from the artificial Lake Shihwa, Korea, Chemosphere 88 (2012) 837-843.

    14. [14]

      [14] Y. Wang, X. Li, A. Li, et al., Effect of municipal sewage treatment plant effluent on bioaccumulation of polychlorinated biphenyls and polybrominated diphenyl ethers in the recipient water, Environ. Sci. Technol. 41 (2007) 6026-6032.

    15. [15]

      [15] I. Ali, V. Gupta, Advances in water treatment by adsorption technology, Nat. Prot. 1 (2007) 2661-2667.

    16. [16]

      [16] S. Rayne, M.G. Ikonomou, Polybrominated diphenyl ethers in an advanced wastewater treatment plant. Part 1: Concentrations, patterns, and influence of treatment processes, J. Environ. Eng. Sci. 4 (2005) 353-367.

    17. [17]

      [17] L. Fang, J. Huang, G. Yu, L. Wang, Photochemical degradation of six polybrominated diphenyl ether congeners under ultraviolet irradiation in hexane, Chemosphere 71 (2008) 258-267.

    18. [18]

      [18] A.P. Vonderheide, K.E. Mueller, J. Meija, G.L. Welsh, Polybrominated diphenyl ethers: causes for concern and knowledge gaps regarding environmental distribution, fate and toxicity, Sci. Total Environ. 400 (2008) 425-436.

    19. [19]

      [19] Y.T. Guo, H.B. Wu, G.H. Wang, et al., Progress on biodegradation of polybrominated diphenyl ethers by microorganisms, Environ. Sci. Technol. 3 (2012) 030.

    20. [20]

      [20] Y. Li, Y. Hashi, Y. Liu, H.F. Li, J.M. Lin, Comparison and optimization of several pretreatment techniques for determination of decabrominated diphenyl ether in polymer sample by gas chromatography-mass spectrometry, Anal. Sci. 25 (2009) 523-527.

    21. [21]

      [21] D. Ueno, C. Darling, M. Alaee, et al., Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) in the abiotic environment: surface water and precipitation from Ontario, Canada, Environ. Sci. Technol. 42 (2008) 1657-1664.

    22. [22]

      [22] M. Rezaee, Y. Yamini, M. Faraji, Evolution of dispersive liquid-liquid microextraction method, J. Chromatogr. A 1217 (2010) 2342-2357.

    23. [23]

      [23] Y. Li, J. Hu, X. Liu, et al., Dispersive liquid-liquid microextraction followed by reversed phase HPLC for the determination of decabrominated diphenyl ether in natural water, J. Sep. Sci. 31 (2008) 2371-2376.

    24. [24]

      [24] N. Fontanals, T. Barri, S. Bergström, J.Å. Jönsson, Determination of polybrominated diphenyl ethers at trace levels in environmental waters using hollow-fiber microporous membrane liquid-liquid extraction and gas chromatography-mass spectrometry, J. Chromatogr. A 1133 (2006) 41-48.

    25. [25]

      [25] H. Liu, Q. Zhang, Z. Cai, et al., Separation of polybrominated diphenyl ethers, polychlorinated biphenyls, polychlorinated dibenzo-dibenzo-p-dioxins and dibenzo-furans in environmental samples using silica gel and florisil fractionation chromatography, Anal. Chim. Acta 557 (2006) 314-320.

    26. [26]

      [26] X. Liu, J. Li, Z. Zhao, et al., Solid-phase extraction combined with dispersive liquid-liquid microextraction for the determination for polybrominated diphenyl ethers in different environmental matrices, J. Chromatogr. A 1216 (2009) 2220-2226.

    27. [27]

      [27] S.I. Kawano, Y. Inohana, Y. Hashi, J.M. Lin, Analysis of keto-enoltautomers of curcumin by liquid chromatography/mass spectrometry, Chin. Chem. Lett. 24 (2013) 685-687.

    28. [28]

      [28] S.S. Liu, Y. Liu, D.Q. Yin, L.S. Wang, Predicting the relative retention time (RRT) of polybrominated diphenyl ethers (PBDEs), Chin. Chem. Lett. 16 (2005) 1559-1662.

    29. [29]

      [29] G.J. Wang, M.L. Qi, Analysis of volatile compounds in Herba asari by single-drop micro-extraction gas chromatography-mass spectrometry, Chin. Chem. Lett. 24 (2013) 542-544.

  • 加载中
    1. [1]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    2. [2]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

    3. [3]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    4. [4]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    5. [5]

      Haoyang WangRonghao ZhangYanlun RenLi Zhang . A convenient method for measuring gas-liquid volumetric mass transfer coefficient in micro reactors. Chinese Chemical Letters, 2024, 35(4): 108833-. doi: 10.1016/j.cclet.2023.108833

    6. [6]

      Wangyan HuKe LiXiangnan DouNing LiXiayan Wang . Nano-sized stationary phase packings retained by single-particle frit for microchip liquid chromatography. Chinese Chemical Letters, 2024, 35(4): 108806-. doi: 10.1016/j.cclet.2023.108806

    7. [7]

      Yang LiYihan ChenJiaxin LuoQihuan LiYiwu QuanYixiang Cheng . Enhanced circularly polarized luminescence emission promoted by achiral dichroic oligomers of F8BT in cholesteric liquid crystal. Chinese Chemical Letters, 2024, 35(11): 109864-. doi: 10.1016/j.cclet.2024.109864

    8. [8]

      Yuqing DingZhiying YiZhihui WangHongyu ChenYan Zhao . Liquid nitrogen post-treatment for improved aggregation and electrical properties in organic semiconductors. Chinese Chemical Letters, 2024, 35(12): 109918-. doi: 10.1016/j.cclet.2024.109918

    9. [9]

      Jianwen ZhaoShuai WangShanshan ZhaoLiwei ChenFangang MengXuelin Tian . A non-fluorinated liquid-like membrane with excellent anti-scaling performance for membrane distillation. Chinese Chemical Letters, 2025, 36(1): 109883-. doi: 10.1016/j.cclet.2024.109883

    10. [10]

      Jiajia WangXinXin GeYajing XiangXiaoliang QiYing LiHangbin XuErya CaiChaofan ZhangYulong LanXiaojing ChenYizuo ShiZhangping LiJianliang Shen . An ionic liquid functionalized sericin hydrogel for drug-resistant bacteria-infected diabetic wound healing. Chinese Chemical Letters, 2025, 36(2): 109819-. doi: 10.1016/j.cclet.2024.109819

    11. [11]

      Mengchen Liu Yufei Zhang Yi Xiao Yang Wei Meichen Bi Huaide Jiang Yan Yu Shenghong Zhong . High stretchability and toughness of liquid metal reinforced conductive biocompatible hydrogels for flexible strain sensors. Chinese Journal of Structural Chemistry, 2025, 44(3): 100518-100518. doi: 10.1016/j.cjsc.2025.100518

    12. [12]

      Luyu ZhangZirong DongShuai YuGuangyue LiWeiwen KongWenjuan LiuHaisheng HeYi LuWei WuJianping Qi . Ionic liquid-based in situ dynamically self-assembled cationic lipid nanocomplexes (CLNs) for enhanced intranasal siRNA delivery. Chinese Chemical Letters, 2024, 35(7): 109101-. doi: 10.1016/j.cclet.2023.109101

    13. [13]

      Feng-Qing HuangYu WangJi-Wen WangDai YangShi-Lei WangYuan-Ming FanRaphael N. AlolgaLian-Wen Qi . Chemical isotope labeling-assisted liquid chromatography-mass spectrometry enables sensitive and accurate determination of dipeptides and tripeptides in complex biological samples. Chinese Chemical Letters, 2024, 35(11): 109670-. doi: 10.1016/j.cclet.2024.109670

    14. [14]

      Ning ZhangMengjie QinJiawen ZhuXuejing LouXiao TianWende MaYoumei WangMinghua LuZongwei Cai . Thickness-controllable synthesis of metal-organic framework based hollow nanoflowers with magnetic core via liquid phase epitaxy for phosphopeptides enrichment. Chinese Chemical Letters, 2025, 36(4): 110177-. doi: 10.1016/j.cclet.2024.110177

    15. [15]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    16. [16]

      Wenhao YanShuaiya XueXuerui ZhaoWei ZhangJian Li . Hexagonal boron nitride based slippery liquid infused porous surface with anti-corrosion, anti-contaminant and anti-icing properties for protecting magnesium alloy. Chinese Chemical Letters, 2024, 35(4): 109224-. doi: 10.1016/j.cclet.2023.109224

    17. [17]

      Yufeng WuMingjun JingJuan LiWenhui DengMingguang YiZhanpeng ChenMeixia YangJinyang WuXinkai XuYanson BaiXiaoqing ZouTianjing WuXianyou Wang . Collaborative integration of Fe-Nx active center into defective sulfur/selenium-doped carbon for efficient oxygen electrocatalysts in liquid and flexible Zn-air batteries. Chinese Chemical Letters, 2024, 35(9): 109269-. doi: 10.1016/j.cclet.2023.109269

    18. [18]

      Zhirong YangShan WangMing JiangGengchen LiLong LiFangzhi PengZhihui Shao . One stone three birds: Ni-catalyzed asymmetric allenylic substitution of allenic ethers, hydroalkylation of 1,3-enynes and double alkylation of enynyl ethers. Chinese Chemical Letters, 2024, 35(8): 109518-. doi: 10.1016/j.cclet.2024.109518

    19. [19]

      Yulin MaoJingyu MaJiecheng JiYuliang WangWanhua WuCheng Yang . Crown aldoxime ethers: Their synthesis, structure, acid-catalyzed/photo-induced isomerization and adjustable guest binding. Chinese Chemical Letters, 2024, 35(11): 109927-. doi: 10.1016/j.cclet.2024.109927

    20. [20]

      Guo-Ping YinYa-Juan LiLi ZhangLing-Gao ZengXue-Mei LiuChang-Hua Hu . Citrinsorbicillin A, a novel homotrimeric sorbicillinoid isolated by LC-MS-guided with cytotoxic activity from the fungus Trichoderma citrinoviride HT-9. Chinese Chemical Letters, 2024, 35(8): 109035-. doi: 10.1016/j.cclet.2023.109035

Metrics
  • PDF Downloads(0)
  • Abstract views(719)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return