Citation:
Jie-Ping Sun, Qiang Han, Xiao-Qiong Zhang, Ming-Yu Ding. Investigations on the degradation of aspartame using high-performance liquid chromatography/tandem mass spectrometry[J]. Chinese Chemical Letters,
;2014, 25(9): 1259-1264.
doi:
10.1016/j.cclet.2014.04.012
-
Aspartame is a widely used sweetener, the long-term safety of which has been controversial ever since it was accepted for human consumption. It is unstable and can produce some harmful degradation products under certain storage conditions. A high-performance liquid chromatography/tandem mass spectrometry method was developed for the simultaneous analysis of aspartame and its four degradation products, including aspartic acid, phenylalanine, aspartyl-phenylalanine and 5-benzyl-3,6-dioxo-2-piperazieacetic acid in water and in diet soft drinks. Aspartame and its four degradation products were quantified by a matrix matched external standard calibration curve with excellent correlation coefficients. The limits of detection were 0.16-5.8 μg/L, which exhibited higher sensitivity than common methods. This method was rapid, sensitive, specific and capable of eliminating matrix interferences. It was also applied to the study of the degradation of aspartame at various pH and temperatures. The results indicated that aspartame was partly degraded under strong acidic or basic conditions and the extent of degradation increased with increasing temperature.
-
-
-
[1]
[1] C. Cheng, S.C. Wu, Simultaneous analysis of aspartame and its hydrolysis products of Coca-Cola Zero by on-line postcolumn derivation fluorescence detection and ultraviolet detection coupled two-dimensional high-performance liquid chromatography, J. Chromatogr. A 1218 (2011) 2976-2983.
-
[2]
[2] H.K. Khurana, I.K. Cho, J.Y. Shim, Q.X. Li, S. Jun, Application of multibounce attenuated total reflectance Fourier transform infrared spectroscopy and chemometrics for determination of aspartame in soft drinks, J. Agric. Food Chem. 56 (2008) 778-783.
-
[3]
[3] M.A. Cantarelli, R.G. Pellerano, E.J. Marchevsky, J.M. Camiñ a, Simultaneous determination of saccharin and aspartame in commercial noncaloric sweeteners using the PLS-2 multivariate calibration method and validation by capillary electrophoresis, J. Agric. Food Chem. 56 (2008) 9345-9349.
-
[4]
[4] M. Marinovich, C.L. Galli, C. Bosetti, S. Gallus, C. La Vecchia, Aspartame, low-calorie sweeteners and disease: regulatory safety and epidemiological issues, Food Chem. Toxicol. 60 (2013) 109-115.
-
[5]
[5] I. Ashok, R. Sheeladevi, D. Wankhar, Effect of long-term aspartame (artificial sweetener) on anxiety, locomotor activity and emotionality behavior in Wistar Albino rats, Biomed. Prev. Nutr. 4 (2014) 39-43.
-
[6]
[6] S. Mallikarjun, R.M. Sieburth, Aspartame and risk of cancer: a meta-analytic review, Arch. Environ. Occup. Health (2013), http://dx.doi.org/10.1080/19338244.2013.828674.
-
[7]
[7] S. Pattanaargson, C. Sanchavanakit, Aspartame degradation study using electrospray ionization mass spectrometry, Rapid Commun. Mass Spectrom. 14 (2000) 987-993.
-
[8]
[8] M.M. Conceicao, V.J. Fernandes, A.G. Souza, et al., Study of thermal degradation of aspartame and its products of conversion in sweetener using isothermal thermogravimetry and HPLC, Thermochim. Acta 433 (2005) 163-169.
-
[9]
[9] V.N.O. Fernandes, L.B. Fernandes, J.P. Vasconcellos, et al., Simultaneous analysis of aspartame, cyclamate, saccharin and acesulfame-K by CZE under UV detection, Anal. Methods 5 (2013) 1524-1532.
-
[10]
[10] E.C. Demiralay, G. Ozkan, Optimization strategy for isocratic separation of alphaaspartame and its breakdown products by reversed phase liquid chromatography, Chromatographia 60 (2004) 579-582.
-
[11]
[11] D.J. Yang, B. Chen, Simultaneous determination of nonnutritive sweeteners in foods by HPLC/ESI-MS, J. Agric. Food Chem. 57 (2009) 3022-3027.
-
[12]
[12] S. Jiang, Y.S. Li, B. Sun, Determination of trace level of perchlorate in antarctic snow and ice by ion chromatography coupled with tandem mass spectrometry using an automated sample on-line preconcentration method, Chin. Chem. Lett. 24 (2013) 311-314.
-
[13]
[13] X.Y. Ren, Y. Xue, J. Liang, L.S. Ding, X. Liao, Selective extraction of flavonoids from Ginkgo biloba leaves using human serum albumin functionalized magnetic nanoparticles, Chin. Chem. Lett. 24 (2013) 1099-1102.
-
[14]
[14] S.P. Rong, Y.B. Sun, Z.H. Zhao, Degradation of sulfadiazine antibiotics by water falling film dielectric barrier discharge, Chin. Chem. Lett. 25 (2014) 187-192.
-
[15]
[15] C.Y. Wang, H.Q. Li, L.G. Wang, et al., Insights on the mechanism for synthesis of methylenedianiline from aniline and formaldehyde through HPLC-MS and isotope tracer studies, Chin. Chem. Lett. 23 (2012) 1254-1258.
-
[16]
[16] C.S. Wu, Y. Jin, J.L. Zhang, Y. Ren, Z.X. Jia, Simultaneous determination of seven prohibited substances in cosmetic products by liquid chromatography-tandem mass spectrometry, Chin. Chem. Lett. 24 (2013) 509-511.
-
[17]
[17] S. Kawano, Y. Inohana, Y. Hashi, J.M. Lin, Analysis of keto-enol tautomers of curcumin by liquid chromatography/mass spectrometry, Chin. Chem. Lett. 24 (2013) 685-687.
-
[18]
[18] C. Schummer, J. Sassel, P. Bonenberger, G. Moris, Low-level detections of sudan I, II, III and IV in spices and chili-containing foodstuffs using UPLC-ESI-MS/MS, J. Agric. Food Chem. 61 (2013) 2284-2289.
-
[19]
[19] K. Molder, A. Kunnapas, K. Herodes, I. Leito, "Fast peaks" in chromatograms of sudan dyes, J. Chromatogr. A 1160 (2007) 227-234.
-
[20]
[20] M. Buchgraber, A. Wasik, Determination of nine intense sweeteners in foodstuffs by high-performance liquid chromatography and evaporative light-scattering detection: interlaboratory study, J. AOAC Int. 92 (2009) 208-222.
-
[1]
-
-
-
[1]
Cheng Guo , Xiaoxiao Zhang , Xiujuan Hong , Yiqiu Hu , Lingna Mao , Kezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867
-
[2]
Tian Feng , Yun-Ling Gao , Di Hu , Ke-Yu Yuan , Shu-Yi Gu , Yao-Hua Gu , Si-Yu Yu , Jun Xiong , Yu-Qi Feng , Jie Wang , Bi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259
-
[3]
Feng-Qing Huang , Yu Wang , Ji-Wen Wang , Dai Yang , Shi-Lei Wang , Yuan-Ming Fan , Raphael N. Alolga , Lian-Wen Qi . Chemical isotope labeling-assisted liquid chromatography-mass spectrometry enables sensitive and accurate determination of dipeptides and tripeptides in complex biological samples. Chinese Chemical Letters, 2024, 35(11): 109670-. doi: 10.1016/j.cclet.2024.109670
-
[4]
Wen Su , Siying Liu , Qingfu Zhang , Zhongyan Zhou , Na Wang , Lei Yue . Temperature-controlled electrospray ionization tandem mass spectrometry study on protein/small molecule interaction. Chinese Chemical Letters, 2025, 36(5): 110237-. doi: 10.1016/j.cclet.2024.110237
-
[5]
Qiuting Zhang , Fan Wu , Jin Liu , Hang Su , Yanhui Zhong , Zian Lin . Facile synthesis of single-crystal 3D covalent organic frameworks as stationary phases for high-performance liquid chromatographic separation. Chinese Chemical Letters, 2025, 36(8): 110649-. doi: 10.1016/j.cclet.2024.110649
-
[6]
Xiaotao Jin , Yanlan Wang , Yingping Huang , Di Huang , Xiang Liu . Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism. Chinese Chemical Letters, 2024, 35(10): 109499-. doi: 10.1016/j.cclet.2024.109499
-
[7]
Junmeng Luo , Qiongqiong Wan , Suming Chen . Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level. Chinese Chemical Letters, 2025, 36(1): 109836-. doi: 10.1016/j.cclet.2024.109836
-
[8]
Lu Huang , Jiang Wang , Hong Jiang , Lanfang Chen , Huanwen Chen . On-line determination of selenium compounds in tea infusion by extractive electrospray ionization mass spectrometry combined with a heating reaction device. Chinese Chemical Letters, 2025, 36(1): 109896-. doi: 10.1016/j.cclet.2024.109896
-
[9]
Yanhua Chen , Xian Ding , Jun Zhou , Zhaoying Wang , Yunhai Bo , Ying Hu , Qingce Zang , Jing Xu , Ruiping Zhang , Jiuming He , Fen Yang , Zeper Abliz . Plasma metabolomics combined with mass spectrometry imaging reveals crosstalk between tumor and plasma in gastric cancer genesis and metastasis. Chinese Chemical Letters, 2025, 36(1): 110351-. doi: 10.1016/j.cclet.2024.110351
-
[10]
Haiyan Lu , Jiayue Ye , Yiping Wei , Hua Zhang , Konstantin Chingin , Vladimir Frankevich , Huanwen Chen . Tracing molecular margins of lung cancer by internal extractive electrospray ionization mass spectrometry. Chinese Chemical Letters, 2025, 36(2): 110077-. doi: 10.1016/j.cclet.2024.110077
-
[11]
Keqiang Shi , Xiujuan Hong , Dongyan Xu , Tao Pan , Huiwen Wang , Hongru Feng , Cheng Guo , Yuanjiang Pan . Analysis of RNA modifications in peripheral white blood cells from breast cancer patients by mass spectrometry. Chinese Chemical Letters, 2025, 36(3): 110079-. doi: 10.1016/j.cclet.2024.110079
-
[12]
Peisi Xie , Jing Chen , Yongjun Xia , Zongwei Cai . MALDI and MALDI-2 mass spectrometry imaging contribute to revealing the alternations in lipid metabolism in germinating soybean seeds. Chinese Chemical Letters, 2025, 36(8): 110595-. doi: 10.1016/j.cclet.2024.110595
-
[13]
Yongyi Li , Jin Han , Xiangyu Wang , Zhenwei Wei . In-situ reaction monitoring and kinetics study of photochemical reactions by optical focusing inductive electrospray mass spectrometry. Chinese Chemical Letters, 2025, 36(9): 110708-. doi: 10.1016/j.cclet.2024.110708
-
[14]
Rui Su , Xiaowei Fang , Peng Zeng , Yong Qian , Xuanzhu Li , Huiyu Xing , Jiamei Lin , Jiaquan Xu . Mass spectrometry for non-destructive detection of the average diameter of micro copper wires. Chinese Chemical Letters, 2025, 36(10): 110748-. doi: 10.1016/j.cclet.2024.110748
-
[15]
Kunsong Hu , Yulong Zhang , Jiayi Zhu , Jinhua Mai , Gang Liu , Manoj Krishna Sugumar , Xinhua Liu , Feng Zhan , Rui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423
-
[16]
Mengya Ge , Zijie Zhou , Huaiyang Zhu , Ying Wang , Chao Wang , Chao Lai , Qinghong Wang . Multifunctional gel electrolytes for high-performance zinc metal batteries. Chinese Chemical Letters, 2025, 36(7): 110121-. doi: 10.1016/j.cclet.2024.110121
-
[17]
Chao Zhao , Chenyu Gao , Zhiyi Yang , Tianyou Cao , Qian Luo , Zhijun Zhang . Whole brain lipid dyshomeostasis in depressive-like behavior young adult rats: Mapping by mass spectrometry imaging-based spatial omics. Chinese Chemical Letters, 2025, 36(10): 111089-. doi: 10.1016/j.cclet.2025.111089
-
[18]
Wen LUO , Lin JIN , Palanisamy Kannan , Jinle HOU , Peng HUO , Jinzhong YAO , Peng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418
-
[19]
Zhe Wang , Li-Peng Hou , Qian-Kui Zhang , Nan Yao , Aibing Chen , Jia-Qi Huang , Xue-Qiang Zhang . High-performance localized high-concentration electrolytes by diluent design for long-cycling lithium metal batteries. Chinese Chemical Letters, 2024, 35(4): 108570-. doi: 10.1016/j.cclet.2023.108570
-
[20]
Tong Zhang , Xiaojing Liang , Licheng Wang , Shuai Wang , Xiaoxiao Liu , Yong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(1234)
- HTML views(43)
Login In
DownLoad: