Citation: Min-Jie Shi, Sheng-Zhong Kou, Bao-Shou Shen, Jun-Wei Lang, Zhi Yang, Xing-Bin Yan. Improving the performance of all-solid-state supercapacitors by modifying ionic liquid gel electrolytes with graphene nanosheets prepared by arc-discharge[J]. Chinese Chemical Letters, ;2014, 25(6): 859-864. doi: 10.1016/j.cclet.2014.04.010 shu

Improving the performance of all-solid-state supercapacitors by modifying ionic liquid gel electrolytes with graphene nanosheets prepared by arc-discharge

  • Corresponding author: Sheng-Zhong Kou,  Xing-Bin Yan, 
  • Received Date: 24 January 2014
    Available Online: 20 March 2014

    Fund Project:

  • Ionic liquid gel polymers have widely been used as the electrolytes in all-solid-state supercapacitors, but they suffer from low ionic conductivity and poor electrochemical performance. Arc discharge is a fast, low-cost and scalable method to prepare multi-layered graphene nanosheets, and as-made graphene nanosheets (denoted as ad-GNSs) with few defects, high electrical conductivity and high thermal stability should be favorable conductive additive materials. Here, a novel ionic liquid gel polymer electrolyte based on an ionic liquid (EMIMNTF2) and an copolymer (P(VDF-HFP)) was modified by the addition of ad-GNSs as an ionic conducting promoter. This modified gel electrolyte shows excellent thermal stability up to 400℃ and a wide electrochemical window of 3 V. An all-solid-state supercapacitor based on commercial activated carbon was fabricated using this modified ionic liquid gel polymer electrolyte, which shows obviously improved electrochemical behaviors compared with those of the corresponding all-solid-state supercapacitor using pure ionic liquid gel polymer electrolyte. Specially, smaller internal resistance, higher specific capacitance, better rate performance and cycling stability are achieved. These results indicate that the ionic liquid gel polymers modified by ad-GNSs would be promising and suitable gel electrolytes for high performance all-solid-state electrochemical devices.
  • 加载中
    1. [1]

      [1] G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chem. Soc. Rev. 41 (2012) 797-828.

    2. [2]

      [2] W. Zhang, Y.H. Qu, L.J. Guo, Performance of PbO2/activated carbon hybrid supercapacitor with carbon foam substrate, Chin. Chem. Lett. 23 (2012) 623-626.

    3. [3]

      [3] R.S. Borges, A.L.M. Reddy, M.F. Rodrigues, et al., Supercapacitor operating at 200℃, Sci. Rep. 3 (2013) 2572-2578.

    4. [4]

      [4] L.R. Wang, F. Ran, Y.T. Tan, et al., Coral reef-like polyanaline nanotubes prepared by a reactive template of manganese oxide for supercapacitor electrode, Chin. Chem. Lett. 22 (2011) 964-968.

    5. [5]

      [5] W.W. Liu, Y.Q. Feng, X.B. Yan, J.T. Chen, Q.J. Xue, Superior micro-supercapacitors based on graphene quantum dots, Adv. Funct. Mater. 23 (2013) 4111-4122.

    6. [6]

      [6] M. Liu, L. Gan, C. Tian, et al., Dual template approach for the synthesis of hierarchically mesocellular carbon foams, Chin. Chem. Lett. 20 (2009) 123-126.

    7. [7]

      [7] S.A. Hashmi, A. Kumar, S.K. Tripathi, Experimental studies on polymethyl methacrylate based gel polymer electrolytes for application in electrical double layer capacitors, J. Phys. D: Appl. Phys. 40 (2007) 6527-6534.

    8. [8]

      [8] S.A. Hashmi, R.J. Latham, R.G. Linford, W.S. Schlindwein, Studies on all solid state electric double layer capacitors using proton and lithium ion conducting polymer electrolytes, J. Chem. Soc. Faraday Trans. 93 (1997) 4177-4182.

    9. [9]

      [9] A. Lewandowski, A. Swiderska, Electrochemical capacitors with polymer electrolytes based on ionic liquids, Solid State Ion. 161 (2003) 243-249.

    10. [10]

      [10] A. Fernicola, F.C. Weise, S.G. Greenbaum, et al., Lithiuμ-ion-conducting electrolytes: from an ionic liquid to the polymer membrane, J. Electrochem. Soc. 156 (2009) A514-A520.

    11. [11]

      [11] H.Y. Sung, Y.Y. Wang, C.C. Wan, Preparation and characterization of poly (vinyl chloride-co-vinyl acetate)-based gel electrolytes for Li-Ion batteries, J. Electrochem. Soc. 145 (1998) 1207-1211.

    12. [12]

      [12] M. Armand, F. Endres, D.R. MacFarlane, H. Ohno, B. Scrosati, Ionic-liquid materials for the electrochemical challenges of the future, Nat. Mater. 8 (2009) 621-629.

    13. [13]

      [13] W.W. Liu, X.B. Yan, J.W. Lang, Q.J. Xue, Electrochemical behavior of graphene nanosheets in alkylimidazolium tetrafluoroborate ionic liquid electrolytes: influences of organic solvents and the alkyl chains, J. Mater. Chem. 21 (2011) 13205-13212.

    14. [14]

      [14] T. Abdallah, D. Lemordant, B. Claude-Montigny, Are room temperature ionic liquids able to improve the safety of supercapacitors organic electrolytes without degrading the performances, J. Power Sources 201 (2012) 353-359.

    15. [15]

      [15] W.W. Liu, X.B. Yan, J.W. Lang, Q.J. Xue, Effects of concentration and temperature of EMIMBF4/acetonitrile electrolyte on the supercapacitive behavior of graphene nanosheets, J. Mater. Chem. 22 (2012) 8853-8861.

    16. [16]

      [16] H. Ye, J. Huang, J.J. Xu, A. Khalfan, S.G. Greenbaum, Li ion conducting polymer gel electrolytes based on ionic liquid/PVDF-HFP blends, J. Electrochem. Soc. 154 (2007) A1048-A1057.

    17. [17]

      [17] T.P. Lodge, A unique platform for materials design, Science 321 (2008) 50-51.

    18. [18]

      [18] B. Huang, Z.X. Wang, G.B. Li, et al., Lithium ion conduction in polymer electrolytes based on PAN, Solid State Ion. 85 (1996) 79-84.

    19. [19]

      [19] V.K. Thakur, G. Ding, J. Ma, P.S. Lee, X. Lu, Hybrid materials and polymer electrolytes for electrochromic device applications, Adv. Mater. 24 (2012) 4071-4096.

    20. [20]

      [20] F. Liu, N.A. Hashim, Y.T. Liu, M.R.M. Abed, K. Li, Progress in the production and modification of PVDF membranes, J. Membr. Sci. 375 (2011) 1-27.

    21. [21]

      [21] S.A. Hashmi, A. Kumar, S.K. Tripathi, Experimental studies on solid state electrical double layer capacitors using activated charcoal powder electrodes and PVdF-HFP based gel electrolytes, Ionics 10 (2004) 213-220.

    22. [22]

      [22] W. Lu, K. Henry, C. Turchi, J. Pellegrino, Incorporating ionic liquid electrolytes into polymer gels for solid-state ultracapacitors, J. Electrochem. Soc. 155 (2008) A361-A367.

    23. [23]

      [23] Y. Kumar, G.P. Pandey, S.A. Hashmi, Gel polymer electrolyte based electrical double layer capacitors: comparative study with multiwalled carbon nanotubes and activated carbon electrodes, J. Phys. Chem. C 116 (2012) 26118-26127.

    24. [24]

      [24] G.P. Pandey, S.A. Hashmi, Y. Kumar, Performance studies of activated charcoal based electrical double layer capacitors with ionic liquid gel polymer electrolytes, Energy Fuels 24 (2010) 6644-6652.

    25. [25]

      [25] A.K. Geim, K.S. Novoselov, The rise of graphene, Nat. Mater. 6 (2007) 183-191.

    26. [26]

      [26] D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets, Nat. Nanotechnol. 3 (2008) 101-105.

    27. [27]

      [27] V.C. Tung, M.J. Allen, Y. Yang, R.B. Kaner, High-throughput solution processing of large-scale graphene, Nat. Nanotechnol. 4 (2009) 25-29.

    28. [28]

      [28] G.Y. Fan, W.J. Huang, Synthesis of ruthenium/reduced graphene oxide composites and application for the selective hydrogenation of halonitroaromatics, Chin. Chem. Lett. 25 (2014) 359-363.

    29. [29]

      [29] J. Yang, J.T. Chen, S.X. Yu, X.B. Yan, Q.J. Xue, Synthesis of a graphene nanosheet film with attached amorphous carbon nanoparticles by their simultaneous electrodeposition, Carbon 48 (2010) 2644-2673.

    30. [30]

      [30] K.S. Kim, Y. Zhao, H. Jang, et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature 457 (2009) 706-710.

    31. [31]

      [31] B.S. Shen, J.T. Chen, X.B. Yan, Q.J. Xue, Synthesis of fluorine-doped multi-layered graphene sheets by arc-discharge, RSC Adv. 2 (2012) 6761-6764.

    32. [32]

      [32] K.S. Subrahmanyam, L.S. Panchakarla, A. Govindaraj, et al., Simple method of preparing graphene flakes by an arc-discharge method, J. Phys. Chem. C 113 (2009) 4257-4259.

    33. [33]

      [33] B.S. Shen, W.J. Feng, J.W. Lang, et al., Nitric acid modification of graphene nanosheets prepared by arc-discharge method and their enhanced electrochemical properties, Acta Phys. Chim. Sin. 28 (2012) 1726-1732.

    34. [34]

      [34] R. Kotz, M. Carlen, Principles and applications of electrochemical capacitors, Electrochim. Acta 45 (2000) 2483-2498.

    35. [35]

      [35] X. Yang, F. Zhang, L. Zhang, et al., A high-performance graphene oxide-doped ion gel as gel polymer electrolyte for all-solid-state supercapacitor applications, Adv. Funct. Mater. 23 (2013) 3353-3360.

    36. [36]

      [36] M. Hayyan, F.S. Mjalli, I.M. AlNashef, M.A. Hashim, Investigating the electrochemical windows of ionic liquids, J. Electrochem. Sci. 7 (2012) 8116-8127.

    37. [37]

      [37] G.P. Pandey, S.A. Hashmi, Ionic liquid 1-ethyl-3-methylimidazolium tetracyanoborate-based gel polymer electrolyte for electrochemical capacitors, J. Mater. Chem. A 1 (2013) 3372.

    38. [38]

      [38] C.H. Xu, J. Sun, L. Gao, Synthesis of novel hierarchical graphene/polypyrrole nanosheet composites and their superior electrochemical performance, J. Mater. Chem. 21 (2011) 11253-11258.

    39. [39]

      [39] G.P. Pandey, A.C. Rastogi, Graphene-based all-solid-state supercapacitor with ionic liquid gel polymer electrolyte, MRS Proc. 1440 (2012) 1279-1287.

  • 加载中
    1. [1]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    2. [2]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    3. [3]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    4. [4]

      Wenjing XiongYulin XuFangzhou ZhaoBaokai XiaHongqiang WangWei LiuSheng ChenYongzhi Zhang . Graphene architecture interpenetrated with mesoporous carbon nanosheets promotes fast and stable potassium storage. Chinese Chemical Letters, 2025, 36(4): 109738-. doi: 10.1016/j.cclet.2024.109738

    5. [5]

      Caili YangTao LongRuotong LiChunyang WuYuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675

    6. [6]

      Li LinSong-Lin TianZhen-Yu HuYu ZhangLi-Min ChangJia-Jun WangWan-Qiang LiuQing-Shuang WangFang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802

    7. [7]

      Zhe WangLi-Peng HouQian-Kui ZhangNan YaoAibing ChenJia-Qi HuangXue-Qiang Zhang . High-performance localized high-concentration electrolytes by diluent design for long-cycling lithium metal batteries. Chinese Chemical Letters, 2024, 35(4): 108570-. doi: 10.1016/j.cclet.2023.108570

    8. [8]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    9. [9]

      Kezhen QiShu-yuan LiuRuchun Li . Selective dissolution for stabilizing solid electrolyte interphase. Chinese Chemical Letters, 2024, 35(5): 109460-. doi: 10.1016/j.cclet.2023.109460

    10. [10]

      Ying LiYanjun XuXingqi HanDi HanXuesong WuXinlong WangZhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189

    11. [11]

      Liang MingDan LiuQiyue LuoChaochao WeiChen LiuZiling JiangZhongkai WuLin LiLong ZhangShijie ChengChuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387

    12. [12]

      Xuejie GaoXinyang ChenMing JiangHanyan WuWenfeng RenXiaofei YangRuncang Sun . Long-lifespan thin Li anode achieved by dead Li rejuvenation and Li dendrite suppression for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109448-. doi: 10.1016/j.cclet.2023.109448

    13. [13]

      Yue Zheng Tianpeng Huang Pengxian Han Jun Ma Guanglei Cui . Cathodal Li-ion interfacial transport in sulfide-based all-solid-state batteries: Challenges and improvement strategies. Chinese Journal of Structural Chemistry, 2024, 43(10): 100390-100390. doi: 10.1016/j.cjsc.2024.100390

    14. [14]

      Mengwen Wang Qintao Sun Yue Liu Zhengan Yan Qiyu Xu Yuchen Wu Tao Cheng . Impact of lithium nitrate additives on the solid electrolyte interphase in lithium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(2): 100203-100203. doi: 10.1016/j.cjsc.2023.100203

    15. [15]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    16. [16]

      Wenhao FengChunli LiuZheng LiuHuan PangIn-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552

    17. [17]

      Ziling JiangShaoqing ChenChaochao WeiZiqi ZhangZhongkai WuQiyue LuoLiang MingLong ZhangChuang Yu . Enabling superior electrochemical performance of NCA cathode in Li5.5PS4.5Cl1.5-based solid-state batteries with a dual-electrolyte layer. Chinese Chemical Letters, 2024, 35(4): 108561-. doi: 10.1016/j.cclet.2023.108561

    18. [18]

      Mengxiang ZhuTao DingYunzhang LiYuanjie PengRuiping LiuQuan ZouLeilei YangShenglei SunPin ZhouGuosheng ShiDongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833

    19. [19]

      Yaping WangPengcheng YuanZeyuan XuXiong-Xiong LiuShengfa FengMufan CaoChen CaoXiaoqiang WangLong PanZheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776

    20. [20]

      Hongbin Liu Putao Zhang . Effective approach to stabilize silicon anode: Controllable molecular construction of artificial solid electrolyte interphase. Chinese Journal of Structural Chemistry, 2025, 44(3): 100444-100444. doi: 10.1016/j.cjsc.2024.100444

Metrics
  • PDF Downloads(0)
  • Abstract views(658)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return