Citation:
Min-Jie Shi, Sheng-Zhong Kou, Bao-Shou Shen, Jun-Wei Lang, Zhi Yang, Xing-Bin Yan. Improving the performance of all-solid-state supercapacitors by modifying ionic liquid gel electrolytes with graphene nanosheets prepared by arc-discharge[J]. Chinese Chemical Letters,
;2014, 25(6): 859-864.
doi:
10.1016/j.cclet.2014.04.010
-
Ionic liquid gel polymers have widely been used as the electrolytes in all-solid-state supercapacitors, but they suffer from low ionic conductivity and poor electrochemical performance. Arc discharge is a fast, low-cost and scalable method to prepare multi-layered graphene nanosheets, and as-made graphene nanosheets (denoted as ad-GNSs) with few defects, high electrical conductivity and high thermal stability should be favorable conductive additive materials. Here, a novel ionic liquid gel polymer electrolyte based on an ionic liquid (EMIMNTF2) and an copolymer (P(VDF-HFP)) was modified by the addition of ad-GNSs as an ionic conducting promoter. This modified gel electrolyte shows excellent thermal stability up to 400℃ and a wide electrochemical window of 3 V. An all-solid-state supercapacitor based on commercial activated carbon was fabricated using this modified ionic liquid gel polymer electrolyte, which shows obviously improved electrochemical behaviors compared with those of the corresponding all-solid-state supercapacitor using pure ionic liquid gel polymer electrolyte. Specially, smaller internal resistance, higher specific capacitance, better rate performance and cycling stability are achieved. These results indicate that the ionic liquid gel polymers modified by ad-GNSs would be promising and suitable gel electrolytes for high performance all-solid-state electrochemical devices.
-
-
-
[1]
[1] G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chem. Soc. Rev. 41 (2012) 797-828.
-
[2]
[2] W. Zhang, Y.H. Qu, L.J. Guo, Performance of PbO2/activated carbon hybrid supercapacitor with carbon foam substrate, Chin. Chem. Lett. 23 (2012) 623-626.
-
[3]
[3] R.S. Borges, A.L.M. Reddy, M.F. Rodrigues, et al., Supercapacitor operating at 200℃, Sci. Rep. 3 (2013) 2572-2578.
-
[4]
[4] L.R. Wang, F. Ran, Y.T. Tan, et al., Coral reef-like polyanaline nanotubes prepared by a reactive template of manganese oxide for supercapacitor electrode, Chin. Chem. Lett. 22 (2011) 964-968.
-
[5]
[5] W.W. Liu, Y.Q. Feng, X.B. Yan, J.T. Chen, Q.J. Xue, Superior micro-supercapacitors based on graphene quantum dots, Adv. Funct. Mater. 23 (2013) 4111-4122.
-
[6]
[6] M. Liu, L. Gan, C. Tian, et al., Dual template approach for the synthesis of hierarchically mesocellular carbon foams, Chin. Chem. Lett. 20 (2009) 123-126.
-
[7]
[7] S.A. Hashmi, A. Kumar, S.K. Tripathi, Experimental studies on polymethyl methacrylate based gel polymer electrolytes for application in electrical double layer capacitors, J. Phys. D: Appl. Phys. 40 (2007) 6527-6534.
-
[8]
[8] S.A. Hashmi, R.J. Latham, R.G. Linford, W.S. Schlindwein, Studies on all solid state electric double layer capacitors using proton and lithium ion conducting polymer electrolytes, J. Chem. Soc. Faraday Trans. 93 (1997) 4177-4182.
-
[9]
[9] A. Lewandowski, A. Swiderska, Electrochemical capacitors with polymer electrolytes based on ionic liquids, Solid State Ion. 161 (2003) 243-249.
-
[10]
[10] A. Fernicola, F.C. Weise, S.G. Greenbaum, et al., Lithiuμ-ion-conducting electrolytes: from an ionic liquid to the polymer membrane, J. Electrochem. Soc. 156 (2009) A514-A520.
-
[11]
[11] H.Y. Sung, Y.Y. Wang, C.C. Wan, Preparation and characterization of poly (vinyl chloride-co-vinyl acetate)-based gel electrolytes for Li-Ion batteries, J. Electrochem. Soc. 145 (1998) 1207-1211.
-
[12]
[12] M. Armand, F. Endres, D.R. MacFarlane, H. Ohno, B. Scrosati, Ionic-liquid materials for the electrochemical challenges of the future, Nat. Mater. 8 (2009) 621-629.
-
[13]
[13] W.W. Liu, X.B. Yan, J.W. Lang, Q.J. Xue, Electrochemical behavior of graphene nanosheets in alkylimidazolium tetrafluoroborate ionic liquid electrolytes: influences of organic solvents and the alkyl chains, J. Mater. Chem. 21 (2011) 13205-13212.
-
[14]
[14] T. Abdallah, D. Lemordant, B. Claude-Montigny, Are room temperature ionic liquids able to improve the safety of supercapacitors organic electrolytes without degrading the performances, J. Power Sources 201 (2012) 353-359.
-
[15]
[15] W.W. Liu, X.B. Yan, J.W. Lang, Q.J. Xue, Effects of concentration and temperature of EMIMBF4/acetonitrile electrolyte on the supercapacitive behavior of graphene nanosheets, J. Mater. Chem. 22 (2012) 8853-8861.
-
[16]
[16] H. Ye, J. Huang, J.J. Xu, A. Khalfan, S.G. Greenbaum, Li ion conducting polymer gel electrolytes based on ionic liquid/PVDF-HFP blends, J. Electrochem. Soc. 154 (2007) A1048-A1057.
-
[17]
[17] T.P. Lodge, A unique platform for materials design, Science 321 (2008) 50-51.
-
[18]
[18] B. Huang, Z.X. Wang, G.B. Li, et al., Lithium ion conduction in polymer electrolytes based on PAN, Solid State Ion. 85 (1996) 79-84.
-
[19]
[19] V.K. Thakur, G. Ding, J. Ma, P.S. Lee, X. Lu, Hybrid materials and polymer electrolytes for electrochromic device applications, Adv. Mater. 24 (2012) 4071-4096.
-
[20]
[20] F. Liu, N.A. Hashim, Y.T. Liu, M.R.M. Abed, K. Li, Progress in the production and modification of PVDF membranes, J. Membr. Sci. 375 (2011) 1-27.
-
[21]
[21] S.A. Hashmi, A. Kumar, S.K. Tripathi, Experimental studies on solid state electrical double layer capacitors using activated charcoal powder electrodes and PVdF-HFP based gel electrolytes, Ionics 10 (2004) 213-220.
-
[22]
[22] W. Lu, K. Henry, C. Turchi, J. Pellegrino, Incorporating ionic liquid electrolytes into polymer gels for solid-state ultracapacitors, J. Electrochem. Soc. 155 (2008) A361-A367.
-
[23]
[23] Y. Kumar, G.P. Pandey, S.A. Hashmi, Gel polymer electrolyte based electrical double layer capacitors: comparative study with multiwalled carbon nanotubes and activated carbon electrodes, J. Phys. Chem. C 116 (2012) 26118-26127.
-
[24]
[24] G.P. Pandey, S.A. Hashmi, Y. Kumar, Performance studies of activated charcoal based electrical double layer capacitors with ionic liquid gel polymer electrolytes, Energy Fuels 24 (2010) 6644-6652.
-
[25]
[25] A.K. Geim, K.S. Novoselov, The rise of graphene, Nat. Mater. 6 (2007) 183-191.
-
[26]
[26] D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets, Nat. Nanotechnol. 3 (2008) 101-105.
-
[27]
[27] V.C. Tung, M.J. Allen, Y. Yang, R.B. Kaner, High-throughput solution processing of large-scale graphene, Nat. Nanotechnol. 4 (2009) 25-29.
-
[28]
[28] G.Y. Fan, W.J. Huang, Synthesis of ruthenium/reduced graphene oxide composites and application for the selective hydrogenation of halonitroaromatics, Chin. Chem. Lett. 25 (2014) 359-363.
-
[29]
[29] J. Yang, J.T. Chen, S.X. Yu, X.B. Yan, Q.J. Xue, Synthesis of a graphene nanosheet film with attached amorphous carbon nanoparticles by their simultaneous electrodeposition, Carbon 48 (2010) 2644-2673.
-
[30]
[30] K.S. Kim, Y. Zhao, H. Jang, et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature 457 (2009) 706-710.
-
[31]
[31] B.S. Shen, J.T. Chen, X.B. Yan, Q.J. Xue, Synthesis of fluorine-doped multi-layered graphene sheets by arc-discharge, RSC Adv. 2 (2012) 6761-6764.
-
[32]
[32] K.S. Subrahmanyam, L.S. Panchakarla, A. Govindaraj, et al., Simple method of preparing graphene flakes by an arc-discharge method, J. Phys. Chem. C 113 (2009) 4257-4259.
-
[33]
[33] B.S. Shen, W.J. Feng, J.W. Lang, et al., Nitric acid modification of graphene nanosheets prepared by arc-discharge method and their enhanced electrochemical properties, Acta Phys. Chim. Sin. 28 (2012) 1726-1732.
-
[34]
[34] R. Kotz, M. Carlen, Principles and applications of electrochemical capacitors, Electrochim. Acta 45 (2000) 2483-2498.
-
[35]
[35] X. Yang, F. Zhang, L. Zhang, et al., A high-performance graphene oxide-doped ion gel as gel polymer electrolyte for all-solid-state supercapacitor applications, Adv. Funct. Mater. 23 (2013) 3353-3360.
-
[36]
[36] M. Hayyan, F.S. Mjalli, I.M. AlNashef, M.A. Hashim, Investigating the electrochemical windows of ionic liquids, J. Electrochem. Sci. 7 (2012) 8116-8127.
-
[37]
[37] G.P. Pandey, S.A. Hashmi, Ionic liquid 1-ethyl-3-methylimidazolium tetracyanoborate-based gel polymer electrolyte for electrochemical capacitors, J. Mater. Chem. A 1 (2013) 3372.
-
[38]
[38] C.H. Xu, J. Sun, L. Gao, Synthesis of novel hierarchical graphene/polypyrrole nanosheet composites and their superior electrochemical performance, J. Mater. Chem. 21 (2011) 11253-11258.
-
[39]
[39] G.P. Pandey, A.C. Rastogi, Graphene-based all-solid-state supercapacitor with ionic liquid gel polymer electrolyte, MRS Proc. 1440 (2012) 1279-1287.
-
[1]
-
-
-
[1]
Cheng Guo , Xiaoxiao Zhang , Xiujuan Hong , Yiqiu Hu , Lingna Mao , Kezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867
-
[2]
Sanmei Wang , Yong Zhou , Hengxin Fang , Chunyang Nie , Chang Q Sun , Biao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476
-
[3]
Sanmei Wang , Dengxin Yan , Wenhua Zhang , Liangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611
-
[4]
Wenjing Xiong , Yulin Xu , Fangzhou Zhao , Baokai Xia , Hongqiang Wang , Wei Liu , Sheng Chen , Yongzhi Zhang . Graphene architecture interpenetrated with mesoporous carbon nanosheets promotes fast and stable potassium storage. Chinese Chemical Letters, 2025, 36(4): 109738-. doi: 10.1016/j.cclet.2024.109738
-
[5]
Caili Yang , Tao Long , Ruotong Li , Chunyang Wu , Yuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675
-
[6]
Li Lin , Song-Lin Tian , Zhen-Yu Hu , Yu Zhang , Li-Min Chang , Jia-Jun Wang , Wan-Qiang Liu , Qing-Shuang Wang , Fang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802
-
[7]
Zhe Wang , Li-Peng Hou , Qian-Kui Zhang , Nan Yao , Aibing Chen , Jia-Qi Huang , Xue-Qiang Zhang . High-performance localized high-concentration electrolytes by diluent design for long-cycling lithium metal batteries. Chinese Chemical Letters, 2024, 35(4): 108570-. doi: 10.1016/j.cclet.2023.108570
-
[8]
Chaozheng He , Pei Shi , Donglin Pang , Zhanying Zhang , Long Lin , Yingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116
-
[9]
Kezhen Qi , Shu-yuan Liu , Ruchun Li . Selective dissolution for stabilizing solid electrolyte interphase. Chinese Chemical Letters, 2024, 35(5): 109460-. doi: 10.1016/j.cclet.2023.109460
-
[10]
Ying Li , Yanjun Xu , Xingqi Han , Di Han , Xuesong Wu , Xinlong Wang , Zhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189
-
[11]
Liang Ming , Dan Liu , Qiyue Luo , Chaochao Wei , Chen Liu , Ziling Jiang , Zhongkai Wu , Lin Li , Long Zhang , Shijie Cheng , Chuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387
-
[12]
Xuejie Gao , Xinyang Chen , Ming Jiang , Hanyan Wu , Wenfeng Ren , Xiaofei Yang , Runcang Sun . Long-lifespan thin Li anode achieved by dead Li rejuvenation and Li dendrite suppression for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109448-. doi: 10.1016/j.cclet.2023.109448
-
[13]
Yue Zheng , Tianpeng Huang , Pengxian Han , Jun Ma , Guanglei Cui . Cathodal Li-ion interfacial transport in sulfide-based all-solid-state batteries: Challenges and improvement strategies. Chinese Journal of Structural Chemistry, 2024, 43(10): 100390-100390. doi: 10.1016/j.cjsc.2024.100390
-
[14]
Mengwen Wang , Qintao Sun , Yue Liu , Zhengan Yan , Qiyu Xu , Yuchen Wu , Tao Cheng . Impact of lithium nitrate additives on the solid electrolyte interphase in lithium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(2): 100203-100203. doi: 10.1016/j.cjsc.2023.100203
-
[15]
Hengying Xiang , Nanping Deng , Lu Gao , Wen Yu , Bowen Cheng , Weimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182
-
[16]
Wenhao Feng , Chunli Liu , Zheng Liu , Huan Pang . In-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552
-
[17]
Ziling Jiang , Shaoqing Chen , Chaochao Wei , Ziqi Zhang , Zhongkai Wu , Qiyue Luo , Liang Ming , Long Zhang , Chuang Yu . Enabling superior electrochemical performance of NCA cathode in Li5.5PS4.5Cl1.5-based solid-state batteries with a dual-electrolyte layer. Chinese Chemical Letters, 2024, 35(4): 108561-. doi: 10.1016/j.cclet.2023.108561
-
[18]
Mengxiang Zhu , Tao Ding , Yunzhang Li , Yuanjie Peng , Ruiping Liu , Quan Zou , Leilei Yang , Shenglei Sun , Pin Zhou , Guosheng Shi , Dongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833
-
[19]
Yaping Wang , Pengcheng Yuan , Zeyuan Xu , Xiong-Xiong Liu , Shengfa Feng , Mufan Cao , Chen Cao , Xiaoqiang Wang , Long Pan , Zheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776
-
[20]
Hongbin Liu , Putao Zhang . Effective approach to stabilize silicon anode: Controllable molecular construction of artificial solid electrolyte interphase. Chinese Journal of Structural Chemistry, 2025, 44(3): 100444-100444. doi: 10.1016/j.cjsc.2024.100444
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(658)
- HTML views(3)