Citation:
Ying Ren, Gen-Shu Zhou, Dong-Lang Chai, Xiao-Ping Qiao. On the formation of the interlayer between Ni-P coating and AZ33 magnesium alloy substrate by means of in situ SEM observation[J]. Chinese Chemical Letters,
;2014, 25(6): 947-952.
doi:
10.1016/j.cclet.2014.04.009
-
Pre-treatment process is the key step for electroless plating. Once a suitable pre-treatment film is in place, the desired metals can be plated. In this paper, Ni-P coating was successfully prepared on AZ33 magnesium alloy with Mg(OH)2 pre-treatment film by electroless plating. To investigate the role of MgF2 in Ni-P coating, the deposition procedures between Mg(OH)2 pre-treatment film and Mg(OH)2-MgF2 pre-treatment film (a traditional process) were compared. The surfacemorphology variations of coatings were observed with scanning electron microscopy and the compositions were analyzed by energy dispersive spectrometry. The results showed that during the plating, both MgF2 and Ni-P deposited at the initial stage, and MgF2 distributed in the bottom of the coating, forming a transitional interlayer with Ni-P. According to the heat quench test, a poor adhesion of the coating mainly occurred between the MgF2 and Ni-P coating.
-
-
-
[1]
[1] G.L. Song, Corrosion and Protection of Magnesium Alloys, Chemical Industry Press, Beijing, 2006.
-
[2]
[2] W.X. Li, Magnesium and Magnesium Alloys, Zhongnan University Press, Changsha, 2005, pp. 1-5.
-
[3]
[3] T.C. Chang, J.Y. Wang, C.L. Chu, S.Y. Lee, Mechanical properties and microstructures of various Mg-Li alloys, Mater. Lett. 60 (2006) 3272-3276.
-
[4]
[4] Y.W. Song, D.Y. Shan, E.H. Han, Corrosion behaviors of electroless plating Ni-P coatings on deposited on magnesium alloys in artificial sweat solution, Electrochim. Acta 53 (2007) 2009-2015.
-
[5]
[5] H.W. Huo, Y. Li, F.H.Wang, Corrosion of AZ91Dmagnesiumalloy with a chemical conversion coating and electroless nickel layer, Corros. Sci. 46 (2004) 1467-1477.
-
[6]
[6] J.E. Gray, B. Luan, Protective coatings on magnesium and its alloys-a critical review, J. Alloys Compd. 336 (2002) 88-113.
-
[7]
[7] Y.W. Song, D.Y. Shan, E.H. Han, High corrosion resistance of electroless composite plating coatings on AZ91D magnesium alloys, Elelctrochim. Acta 53 (2008) 2135-2143.
-
[8]
[8] R. Ambata, W. Zhou, Electroless nickel-plating on AZ91D magnesium alloy: effect of substrate microstructure and plating parameters, Surf. Coat Technol. 179 (2004) 124-134.
-
[9]
[9] J.E. Gray-Munro, B. Luan, L. Huntington, The influence of surface microchemistry in protective film formation on multi-phase magnesium alloys, Appl. Surf. Sci. 254 (2008) 2871-2877.
-
[10]
[10] Y.H. Xiang, W.B. Hu, X.K. Liu, Initial deposition mechanism of electroless nickel plating on magnesium alloys, Trans. Inst. Met. Finish. 79 (2001) 30-32.
-
[11]
[11] X. Liu, Y. Xiang, W. Hu, W. Ding, Effect of fluoride film on bonding of electroless nickel coating with magnesiumalloys, Trans. Inst.Met. Finish. 83 (2005) 286-290.
-
[12]
[12] G. Dong, Z.G. Fan, Z.D. Yang, Effects and characteristics of MgF2 during electroless nickel plating of magnesium alloys, Trans. Nonferrous Met. Soc. China 17 (2007) 791-795.
-
[13]
[13] J.Z. XiaHou, Research on Smelting Preparation, Microstructure and Mechanical Properties of Ultra-Light Mg-Li alloy, M.S. Thesis, Xi'an Jiaotong University, 2010.
-
[14]
[14] X.X. Jiang, W. Shen, The Fundamental and Practice of Electroless Plating, National Defence Industry Press, Beijing, 2000, pp. 8-15.
-
[15]
[15] G.O. Mallory, J.B. Hajdu, Electroless Plating: Fundamentals and Applications, Cambridge University Press, Florida, 1990, pp. 6-10.
-
[16]
[16] N. Iranipour, R. AzariKsosroshahi, N. ParviniAhmadi, A study on the electroless Ni-P deposition on WE43 magnesium alloy, Surf. Coat. Technol. 205 (2010) 2281-2286.
-
[1]
-
-
-
[1]
Ya Song , Mingxia Zhou , Zhu Chen , Huali Nie , Jiao-Jing Shao , Guangmin Zhou . Integrated interconnected porous and lamellar structures realized fast ion/electron conductivity in high-performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(6): 109200-. doi: 10.1016/j.cclet.2023.109200
-
[2]
Shuai Li , Liuting Zhang , Fuying Wu , Yiqun Jiang , Xuebin Yu . Efficient catalysis of FeNiCu-based multi-site alloys on magnesium-hydride for solid-state hydrogen storage. Chinese Chemical Letters, 2025, 36(1): 109566-. doi: 10.1016/j.cclet.2024.109566
-
[3]
Junyi Yu , Yin Cheng , Anhong Cai , Xianfeng Huang , Qingrui Zhang . Synthetic Cu(Ⅲ) from copper plating wastewater for onsite decomplexation of Cu(Ⅱ)- and Ni(Ⅱ)-organic complexes. Chinese Chemical Letters, 2025, 36(2): 110549-. doi: 10.1016/j.cclet.2024.110549
-
[4]
Yufei Liu , Liang Xiong , Bingyang Gao , Qingyun Shi , Ying Wang , Zhiya Han , Zhenhua Zhang , Zhaowei Ma , Limin Wang , Yong Cheng . MOF-derived Cu based materials as highly active catalysts for improving hydrogen storage performance of Mg-Ni-La-Y alloys. Chinese Chemical Letters, 2024, 35(12): 109932-. doi: 10.1016/j.cclet.2024.109932
-
[5]
Haohao Sun , Wenxuan Wang , Yuli Xiong , Zelang Jian , Wen Chen . Boosting the electrochromic properties by large V2O5 nanobelts interlayer spacing tuned via PEDOT. Chinese Chemical Letters, 2024, 35(9): 109213-. doi: 10.1016/j.cclet.2023.109213
-
[6]
Mingjiao Lu , Zhixing Wang , Gui Luo , Huajun Guo , Xinhai Li , Guochun Yan , Qihou Li , Xianglin Li , Ding Wang , Jiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638
-
[7]
Haodong Wang , Xiaoxu Lai , Chi Chen , Pei Shi , Houzhao Wan , Hao Wang , Xingguang Chen , Dan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473
-
[8]
Runjing Xu , Xin Gao , Ya Chen , Xiaodong Chen , Lifeng Cui . Research status and prospect of rechargeable magnesium ion batteries cathode materials. Chinese Chemical Letters, 2024, 35(11): 109852-. doi: 10.1016/j.cclet.2024.109852
-
[9]
Yulong Liu , Haoran Lu , Tong Yang , Peng Cheng , Xu Han , Wenyan Liang . Catalytic applications of amorphous alloys in wastewater treatment: A review on mechanisms, recent trends, challenges and future directions. Chinese Chemical Letters, 2024, 35(10): 109492-. doi: 10.1016/j.cclet.2024.109492
-
[10]
Tingting Liu , Pengfei Sun , Wei Zhao , Yingshuang Li , Lujun Cheng , Jiahai Fan , Xiaohui Bi , Xiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813
-
[11]
Ting Hu , Yuxuan Guo , Yixuan Meng , Ze Zhang , Ji Yu , Jianxin Cai , Zhenyu Yang . Uniform lithium deposition induced by copper phthalocyanine additive for durable lithium anode in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108603-. doi: 10.1016/j.cclet.2023.108603
-
[12]
Dong Cheng , Youyou Feng , Bingxi Feng , Ke Wang , Guoxin Song , Gen Wang , Xiaoli Cheng , Yonghui Deng , Jing Wei . Polyphenol-mediated interfacial deposition strategy for supported manganese oxide catalysts with excellent pollutant degradation performance. Chinese Chemical Letters, 2024, 35(5): 108623-. doi: 10.1016/j.cclet.2023.108623
-
[13]
Tao Wei , Jiahao Lu , Pan Zhang , Qi Zhang , Guang Yang , Ruizhi Yang , Daifen Chen , Qian Wang , Yongfu Tang . An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity. Chinese Chemical Letters, 2024, 35(8): 109122-. doi: 10.1016/j.cclet.2023.109122
-
[14]
Jinlong Li , Ruixin Li , Jiahui Liu , Ji-Quan Liu , Jia Xu , Xianglin Zhou , Yefan Zhang , Kairui Wang , Lin Lei , Gang Xie , Fengmei Wang , Ying Yang , Liping Cao . A TOC- and deposition-free electrochromic window driven by redox flow battery. Chinese Chemical Letters, 2024, 35(12): 110355-. doi: 10.1016/j.cclet.2024.110355
-
[15]
Yi Cao , Xiaojiao Ge , Yuanyuan Wei , Lulu He , Aiguo Wu , Juan Li . Tumor microenvironment-activatable neuropeptide-drug conjugates enhanced tumor penetration and inhibition via multiple delivery pathways and calcium deposition. Chinese Chemical Letters, 2024, 35(4): 108672-. doi: 10.1016/j.cclet.2023.108672
-
[16]
Lishan Xiong , Xinyuan Li , Xiaojie Lu , Zhendong Zhang , Yan Zhang , Wen Wu , Chenhui Wang . Inhaled multilevel size-tunable, charge-reversible and mucus-traversing composite microspheres as trojan horse: Enhancing lung deposition and tumor penetration. Chinese Chemical Letters, 2024, 35(9): 109384-. doi: 10.1016/j.cclet.2023.109384
-
[17]
Wenhao Yan , Shuaiya Xue , Xuerui Zhao , Wei Zhang , Jian Li . Hexagonal boron nitride based slippery liquid infused porous surface with anti-corrosion, anti-contaminant and anti-icing properties for protecting magnesium alloy. Chinese Chemical Letters, 2024, 35(4): 109224-. doi: 10.1016/j.cclet.2023.109224
-
[18]
Yixuan Wang , Jiexin Li , Zhihao Shang , Chengcheng Feng , Jianmin Gu , Maosheng Ye , Ran Zhao , Danna Liu , Jingxin Meng , Shutao Wang . Wettability-driven synergistic resistance of scale and oil on robust superamphiphobic coating. Chinese Chemical Letters, 2024, 35(7): 109623-. doi: 10.1016/j.cclet.2024.109623
-
[19]
Fengyu Zhang , Yali Liang , Zhangran Ye , Lei Deng , Yunna Guo , Ping Qiu , Peng Jia , Qiaobao Zhang , Liqiang Zhang . Enhanced electrochemical performance of nanoscale single crystal NMC811 modification by coating LiNbO3. Chinese Chemical Letters, 2024, 35(5): 108655-. doi: 10.1016/j.cclet.2023.108655
-
[20]
Zeyu XU , Tongzhou LU , Haibo SHAO , Jianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(680)
- HTML views(10)