Citation: Samad Khaksar, Mahmoud Tajbakhsh, Milad Gholami, Fariba Rostamnezhad. A highly effi cient procedure for the synthesis of quinoxaline derivatives using polyvinylpolypyrrolidone supported trifl ic acid catalyst (PVPP·OTf)[J]. Chinese Chemical Letters, ;2014, 25(9): 1287-1290. doi: 10.1016/j.cclet.2014.04.008 shu

A highly effi cient procedure for the synthesis of quinoxaline derivatives using polyvinylpolypyrrolidone supported trifl ic acid catalyst (PVPP·OTf)

  • Corresponding author: Samad Khaksar, 
  • Received Date: 31 December 2013
    Available Online: 14 March 2014

  • A polyvinylpolypyrrolidone supported triflic acid was shown to be useful as a recyclable heterogeneous catalyst for the rapid and efficient synthesis of quinoxaline derivatives in good-to-excellent yields. The catalyst is easily prepared, air-stable, reusable, and easily removed from the reaction mixtures.
  • 加载中
    1. [1]

      [1] C.W. Lindsley, Z. Zhao, W.H. Leister, et al., Allosteric Akt (PKB) inhibitors: discovery and SAR of isozyme selective inhibitors, Bioorg. Med. Chem. Lett. 15 (2005) 761-764.

    2. [2]

      [2] M. Loriga, S. Piras, P. Sanna, et al., Quinoxaline chemistry. Part 7. 2-[Aminobenzoates]-and 2-[aminobenzoylglutamate]-quinoxalines as classical antifolate agents. Synthesis and evaluation of in vitro anticancer, anti-HIV and antifungal activity, Farmaco 52 (1997) 157-166.

    3. [3]

      [3] L.E. Seitz, W.J. Suling, R.C. Reynolds, Synthesis and antimycobacterial activity of pyrazine and quinoxaline derivatives, J. Med. Chem. 45 (2002) 5604-5606.

    4. [4]

      [4] W. He, M.R. Meyers, B. Hanney, et al., Potent quinoxaline-based inhibitors of PDGF receptor tyrosine kinase activity. Part 2. The synthesis and biological activities of RPR127963 an orally bioavailable inhibitor, Bioorg. Med. Chem. Lett. 13 (2003) 3097-3100.

    5. [5]

      [5] Y.B. Kim, Y.H. Kim, J.Y. Park, et al., Synthesis and biological activity of new quinoxaline antibiotics of echinomycin analogues, Bioorg. Med. Chem. Lett. 14 (2004) 541-544.

    6. [6]

      [6] A. Katoh, T. Yoshida, J. Ohkanda, Synthesis of quinoxaline derivatives bearing the styryl and phenylethynyl groups and application to a fluorescence derivatization reagent, Heterocycles 52 (2000) 911-920.

    7. [7]

      [7] K.R.J. Thomas, M. Velusamy, J.T. Lin, C.H. Chuen, Y.T. Tao, Chromophore-labeled quinoxaline derivatives as efficient electroluminescent materials, Chem. Mater. 17 (2005) 1860-1866.

    8. [8]

      [8] S. Dailey, W.J. Feast, R.J. Peace, et al., Synthesis and device characterisation of sidechain polymer electron transport materials for organic semiconductor applications, J. Mater. Chem. 11 (2001) 2238-2243.

    9. [9]

      [9] J.L. Sessler, H. Maeda, T. Mizuno, et al., Quinoxaline-bridged porphyrinoids, J. Am. Chem. Soc. 124 (2002) 13474-13479.

    10. [10]

      [10] M.J. Crossley, L.A. Johnston, Laterally-extended porphyrin systems incorporating a switchable unit, Chem. Commun. (2002) 1122-1123.

    11. [11]

      [11] T. Yamaguchi, S. Matsumoto, K. Watanabe, Generation of free radicals from dihydropyranzines with DNA strand-breakage activity, Tetrahedron Lett. 39 (1998) 8311.

    12. [12]

      [12] J.D. Brown, The chemistry of heterocyclic compounds, quinoxalines, in: C.E. Taylor, P. Wipf (Eds.), Supplements II, John Wiley and Sons, New Jersey, 2004.

    13. [13]

      [13] R.S. Bhosale, S.R. Sarda, S.S. Andhapure, et al., An efficient protocol for the synthesis of quinoxaline derivatives at room temperature using molecular iodine as the catalyst, Tetrahedron Lett. 46 (2005) 7183-7186.

    14. [14]

      [14] S.V. More, M.N.V. Sastry, C.C. Wang, et al., Molecular iodine: a powerful catalyst for the easy and efficient synthesis of quinoxalines, Tetrahedron Lett. 46 (2005) 6345-6348.

    15. [15]

      [15] Y.S. Beheshtiha, M.M. Heravi, M. Saeedi, et al., Efficient and green synthesis of 1,2-disubstituted benzimidazoles and quinoxalines using Brønsted acid ionic liquid,[(CH2)4SO3HMIM][HSO4], in water at room temperature, Synth. Commun. 40 (2010) 1216-1223.

    16. [16]

      [16] T.M. Potewar, S.A. Ingale, K.V. Srinivasan, Efficient synthesis of quinoxalines in the ionic liquid 1-n-butylimidazolium tetrafluoroborate ([Hbim]BF4) at ambient temperature, Synth. Commun. 38 (2008) 3601-3612.

    17. [17]

      [17] D. Fang, K. Gong, Z.H. Fei, X.L. Zhou, Z.L. Liu, A practical and efficient synthesis of quinoxaline derivatives catalyzed by task-specific ionic liquid, Catal. Commun. 9 (2008) 317.

    18. [18]

      [18] A.E.A. Porter, A.R. Katritsky, Comprehensive Heterocyclic Chemistry, Pergamon, Oxford, 1984, pp. 157-197.

    19. [19]

      [19] B. Madhav, S. Narayana Murthy, V. Prakash Reddy, et al., Biomimetic synthesis of quinoxalines in water, Tetrahedron Lett. 50 (2009) 6025-6028.

    20. [20]

      [20] H.M. Meshram, P. Ramesh, G. Santosh Kumar, et al., One-pot synthesis of quinoxaline-2-carboxylate derivatives using ionic liquid as reusable reaction media, Tetrahedron Lett. 51 (2010) 4313-4316.

    21. [21]

      [21] R. Mahesh, A.K. Dhar, T.T.V.N.V. Sasank, et al., Citric acid: an efficient and green catalyst for rapid one pot synthesis of quinoxaline derivatives at room temperature, Chin. Chem. Lett. 22 (2011) 389-392.

    22. [22]

      [22] T.K. Huang, L. Shi, R. Wang, et al., Keggin type heteropolyacids-catalyzed synthesis of quinoxaline derivatives in water, Chin. Chem. Lett. 20 (2009) 161-164.

    23. [23]

      [23] A. Shaabani, A.H. Rezayan, M. Behnam, et al., Green chemistry approaches for the synthesis of quinoxaline derivatives: Comparison of ethanol and water in the presence of the reusable catalyst cellulose sulfuric acid, C. R. Chim. 12 (2009) 1249-1252.

    24. [24]

      [24] X.Z. Zhang, J.X. Wang, Y.J. Sun, H.W. Zhan, Synthesis of quinoxaline derivatives catalyzed by PEG-400, Chin. Chem. Lett. 21 (2010) 395-398.

    25. [25]

      [25] P.Y. Lin, R.S. Hou, H.M. Wang, L.J. Kang, L.C. Chen, Hypervalent Iodine(III) sulfonate mediated synthesis of quinoxalines in liquid PEG-400, J. Chin. Chem. Soc. 56 (2009) 683-687.

    26. [26]

      [26] C. Srinivas, C.N.S.S.P. Kumar, V.J. Rao, et al., Efficient, convenient and reusable polyaniline-sulfate salt catalyst for the synthesis of quinoxaline derivatives, J. Mol. Catal. A: Chem. 265 (2007) 227-230.

    27. [27]

      [27] H.M. Meshram, G. Santosh Kumar, P. Ramesh, et al., A mild and convenient synthesis of quinoxalines via cyclization-oxidation process using DABCO as catalyst, Tetrahedron Lett. 51 (2010) 2580-2585.

    28. [28]

      [28] S.V. More, M.N.V. Sastry, C.F. Yao, Cerium (IV) ammonium nitrate (CAN) as a catalyst in tap water: a simple, proficient and green approach for the synthesis of quinoxalines, Green Chem. 8 (2006) 91-95.

    29. [29]

      [29] B. Das, K. Venkateswarlu, K. Sunnel, A. Majhi, An efficient and convenient protocol for the synthesis of quinoxalines and dihydropyrazines via cyclization-oxidation processes using HClO4·SiO2 as a heterogeneous recyclable catalyst, Tetrahedron Lett. 48 (2007) 5371-5374.

    30. [30]

      [30] S.Y. Kim, K.H. Park, Y.K. Chung, Manganese(IV) dioxide-catalyzed synthesis of quinoxalines under microwave irradiation, Chem. Commun. (2005) 1321-1323.

    31. [31]

      [31] S. Khaksar, F. Rostamnezhad, A novel one-pot synthesis of quinoxaline derivatives in fluorinated alcohols, Bull. Korean Chem. Soc. 33 (2012) 2581-2584.

    32. [32]

      [32] A. Hasaninejada, A. Zareb, M.R. Mohammadizadeha, Z. Karami, Synthesis of quinoxaline derivatives via condensation of aryl-1,2-diamines with 1,2-diketones using (N4)6Mo7O24. 4H2O as an efficient, mild and reusable catalyst, J. Iran. Chem. Soc. 1 (2009) 153-158.

    33. [33]

      [33] P.N. Liu, F. Xia, Q.W. Wang, Y.J. Ren, J.Q. Chen, Triflic acid adsorbed on silica gel as an efficient and recyclable catalyst for the addition of β-dicarbonyl compounds to alcohols and alkenes, Green Chem. 12 (2010) 1049-1055.

    34. [34]

      [34] A.D. Angelis, C. Flego, P. Ingallina, et al., Studies on supported triflic acid in alkylation, Catal. Today 65 (2001) 363-371.

    35. [35]

      [35] M.M. Lakouraj, F. Najafizadeh, Polyvinylpolypyrrolidone-bound boron trifluoride (PVPP-BF3); a mild and efficient catalyst for synthesis of 4-metyl coumarins via the Pechmann reaction, C. R. Chim. 15 (2012) 530-532.

    36. [36]

      [36] M.M. Lakouraj, M. Mokhtary, Polyvinylpolypyrrolidone-bromine complex: mild and efficient polymeric reagent for bromination of activated aromatic compounds, Chin. Chem. Lett. 22 (2011) 13-17.

    37. [37]

      [37] M.M. Lakouraj, M. Mokhtary, Polyvinylpolypyrrolidone-bromine complex, mild and efficient polymeric reagent for selective deprotection and oxidative deprotection of silyl ethers, Lett. Org. Chem. 4 (2007) 64-67.

    38. [38]

      [38] A. Ghorbani-Choghamarani, G. Azadi, Polyvinylpolypyrrolidone-supported hydrogen peroxide (PVP-H2O2), silica sulfuric acid and catalytic amounts of ammonium bromide as green, mild and metal-free oxidizing media for the efficient oxidation of alcohols and sulfides, J. Iran. Chem. Soc. 4 (2011) 1082-1090.

    39. [39]

      [39] S. Khaksar, M. Tajbakhsh, M. Gholami, Polyvinylpolypyrrolidone-supported triflic acid (PVPP-OTf) as a new, efficient, and recyclable heterogeneous catalyst for the synthesis of bis-indolyl methane derivatives, C. R. Chim. 17 (2014) 30-34.

    40. [40]

      [40] S. Khaksar, E. Fattahi, E. Fattahi, Organocatalytic synthesis of amides from nitriles via the Ritter reaction, Tetrahedron Lett. 52 (2011) 5943-5946.

    41. [41]

      [41] S. Khaksar, S.M. Talesh, Three-component one-pot synthesis of 2,3-dihydroquinazolin-4(1H)-one derivatives in 2,2,2-trifluoroethanol, C. R. Chim. 15 (2012) 779-783.

    42. [42]

      [42] S. Khaksar, S.M. Vahdat, R.N. Moghaddamnejad, Pentafluorophenylammonium triflate: an efficient, practical, and cost-effective organocatalyst for the Biginelli reaction, Monatsh Chem. 143 (2012) 1671-1674.

  • 加载中
    1. [1]

      Yanqiong WangYaqi HouFengwei HuoXu Hou . Fe3+ ion quantification with reusable bioinspired nanopores. Chinese Chemical Letters, 2025, 36(2): 110428-. doi: 10.1016/j.cclet.2024.110428

    2. [2]

      Le ZhangHui-Yu XieXin LiLi-Ying SunYing-Feng Han . SOMO-HOMO level conversion in triarylmethyl-cored N-heterocyclic carbene-Au(I) complexes triggered by selecting coordination halogens. Chinese Chemical Letters, 2024, 35(11): 109465-. doi: 10.1016/j.cclet.2023.109465

    3. [3]

      Heng YangZhijie ZhouConghui TangFeng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257

    4. [4]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

    5. [5]

      Xiaoyu Zhang Xin Yu . Solar-powered heterogeneous water disinfection nano-system. Chinese Journal of Structural Chemistry, 2025, 44(3): 100439-100439. doi: 10.1016/j.cjsc.2024.100439

    6. [6]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

    7. [7]

      Ruonan GuoHeng ZhangChangsheng GuoNingqing LvBeidou XiJian Xu . Degradation of neonicotinoids with different molecular structures in heterogeneous peroxymonosulfate activation system through different oxidation pathways. Chinese Chemical Letters, 2024, 35(9): 109413-. doi: 10.1016/j.cclet.2023.109413

    8. [8]

      Ji ChenYifan ZhaoShuwen ZhaoHua ZhangYouyu LongLingfeng YangMin XiZitao NiYao ZhouAnran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268

    9. [9]

      Xin HeFeng LiuTao Tu . Double redox-mediated intrinsic semiconductor photocatalysis: Practical semi-heterogeneous synthesis. Chinese Chemical Letters, 2025, 36(3): 110621-. doi: 10.1016/j.cclet.2024.110621

    10. [10]

      Wen-Jing LiJun-Bo WangYu-Heng LiuMo ZhangZhan-Hui Zhang . Molybdenum-doped carbon nitride as an efficient heterogeneous catalyst for direct amination of nitroarenes with arylboronic acids. Chinese Chemical Letters, 2025, 36(3): 110001-. doi: 10.1016/j.cclet.2024.110001

    11. [11]

      Yang LIULijun WANGHongyu WANGZhidong CHENLin SUN . Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015

    12. [12]

      Jia-Cheng HouHong-Tao JiYu-Han LuJia-Sheng WangYao-Dan XuYan-Yan ZengWei-Min He . Sustainable and practical semi-heterogeneous photosynthesis of 5-amino-1,2,4-thiadiazoles over WS2/TEMPO. Chinese Chemical Letters, 2024, 35(8): 109514-. doi: 10.1016/j.cclet.2024.109514

    13. [13]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    14. [14]

      Weichen ZhuWei ZuoPu WangWei ZhanJun ZhangLipin LiYu TianHong QiRui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341

    15. [15]

      Ruiheng LiangHuizhong WuZhongzheng HuGe SongXuyang ZhangOmotayo A. ArotibaMinghua Zhou . Hierarchical Fe-Bi/Bi7O9I3/OVs microspheres coupled with natural air diffusion electrode to achieve efficient heterogeneous visible-light-driven photoelectro-Fenton degradation of tetracycline without aeration. Chinese Chemical Letters, 2025, 36(4): 110136-. doi: 10.1016/j.cclet.2024.110136

Metrics
  • PDF Downloads(0)
  • Abstract views(668)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return