Citation: Jaiprakash N. Sangshetti, Firoz A. Kalam Khan, Rashmi S. Chouthe, Manoj G. Damale, Devanand B. Shinde. Synthesis, docking and ADMET prediction of novel 5-((5-substituted-1-H-1,2,4-triazol-3-yl) methyl)-4,5,6,7-tetrahydrothieno[3,2-c]pyridine as antifungal agents[J]. Chinese Chemical Letters, ;2014, 25(7): 1033-1038. doi: 10.1016/j.cclet.2014.04.003 shu

Synthesis, docking and ADMET prediction of novel 5-((5-substituted-1-H-1,2,4-triazol-3-yl) methyl)-4,5,6,7-tetrahydrothieno[3,2-c]pyridine as antifungal agents

  • Corresponding author: Jaiprakash N. Sangshetti, 
  • Received Date: 20 January 2014
    Available Online: 28 March 2014

    Fund Project: India for providing the laboratory facility. (M.S.)

  • A novel series of 5-((5-substituted-1H-1,2,4-triazol-3-yl)methyl)-4,5,6,7-tetrahydrothieno[3,2-c]pyridines 5(a-i) has been synthesized from thienopyridine hydrazide, substituted aromatic nitriles using 4-dimethylaminopyridine (DMAP) as a catalyst under microwave irradiation and evaluated for their in vitro antifungal activity. Compound 5g is found to be more potent against Candida albicans when compared with miconazole. Docking study of the newly synthesized compounds was performed, and results showed good binding mode in the active site of fungal enzyme P450 cytochrome lanosterol 14ademethylase. ADMET properties of synthesized compounds were also analyzed and showed good drug like properties. The results of in vitro antifungal activity, docking study and ADMET prediction revealed that the synthesized compounds have potential antifungal activity and can be further optimized and developed as a lead compound.
  • 加载中
    1. [1]

      [1] D.J. Sheehan, C.A. Hitchcock, C.M. Sibley, Current and emerging azole antifungal agents, Clin. Microbiol. Rev. 12 (1999) 40-79.

    2. [2]

      [2] R. Cha, J.D. Sobel, Fluconazole for the treatment of candidiasis: 15 years experience, Expert Rev. Anti. Infect. Ther. 2 (2004) 357-366.

    3. [3]

      [3] N.H. Georgopapadakou, T.J. Walsh, Antifungal agents: chemotherapeutic targets and immunologic strategies, Antimicrob. Agents Chemother. 40 (1996) 279-291.

    4. [4]

      [4] M.A. Pfaller, S.A. Messer, R.J. Hollis, et al., In vitro activities of posaconazole (Sch 56592) compared with those of itraconazole and fluconazole against 3685 clinical isolates of Candida spp. and Cryptococcus neoformans, Antimicrob. Agents Chemother. 45 (2001) 2862-2864.

    5. [5]

      [5] L. Jeu, F.J. Piacenti, A.G. Lyakhovetskiy, H.B. Fung, Voriconazole, Clin. Ther. 25 (2003) 1321-1381.

    6. [6]

      [6] G.I. Lepesheva, N.G. Zaitseva, W.D. Nes, et al., CYP51 from Trypanosoma cruzi: a phyla-specific residue in the B0 helix defines substrate preferences of sterol 14ademethylase, J. Biol. Chem. 281 (2006) 3577-3585.

    7. [7]

      [7] K. Liaras, J. Geronikaki, J. Glamočlija, A.Ćirić,M. Soković, Thiazole-based chalcones as potent antimicrobial agents: synthesis and biological evaluation, Bioorg. Med. Chem. 19 (2011) 3135-3140.

    8. [8]

      [8] R.G. Kalkhambkar, G.M. Kulkarni, H. Shivkumar, R.R. Nagendra, Synthesis of novel triheterocyclic thiazoles as anti-inflammatory and analgesic agents, Eur. J. Med. Chem. 42 (2007) 1272-1276.

    9. [9]

      [9] A.B. Scheiff, S.G. Yerande, A. El-Tayeb, et al., 2-Amino-5-benzoyl-4-phenylthiazoles: development of potent and selective adenosine A1 receptor antagonists, Bioorg. Med. Chem. 18 (2010) 2195-2203.

    10. [10]

      [10] Y. Jiang, J. Zhang, Y. Cao, et al., Synthesis, in vitro evaluation and molecular docking studies of new triazole derivatives as antifungal agents, Bioorg. Med. Chem. Lett. 21 (2011) 4471-4475.

    11. [11]

      [11] X. Chai, J. Zhang, Y. Cao, et al., Design, synthesis and molecular docking studies of novel triazole as antifungal agent, Eur. J. Med. Chem. 46 (2011) 3167-3176.

    12. [12]

      [12] P.H. Olesen, A.R. Sorensen, B. Urso, et al., Synthesis and in vitro characterization of 1-(4-aminofurazan-3-yl)-5-dialkylaminomethyl-1H-[1,2,3]triazole-4-carboxylic acid derivatives: a new class of selective GSK-3 inhibitors, J. Med. Chem. 46 (2003) 3333-3341.

    13. [13]

      [13] H.J. Breslin, T.A. Miskowski, M.J. Kukla, et al., Tripeptidyl-peptidase II (TPP II) inhibitory activity of (S)-2,3-dihydro-2-(1H-imidazol-2-yl)-1H-indoles, a systematic SAR evaluation. Part 2, Bioorg. Med. Chem. Lett. 13 (2003) 4467-4471.

    14. [14]

      [14] J.J. Baldwin, P.A. Kasinger, F.C. Novello, et al., 4-Trifluoromethylimidazoles and 5-(4-pyridyl)-1,2,4-triazoles, new classes of xanthine oxidase inhibitors, J. Med. Chem. 18 (1975) 895-900.

    15. [15]

      [15] Y. Kap-Sun, E. Michelle, J.F. Farkas, N.A. Meanwell, A base-catalyzed, direct synthesis of 3,5-disubstituted 1,2,4-triazoles from nitriles and hydrazides, Tetrahedron Lett. 46 (2005) 3429-3432.

    16. [16]

      [16] J.N. Sangshetti, A.R. Chabukswar, D.B. Shinde, et al., Microwave assisted one pot synthesis of some novel 2,5-disubstituted 1,3,4-oxadiazoles as antifungal agents, Bioorg. Med. Chem. Lett. 21 (2011) 444-448.

    17. [17]

      [17] J.N. Sangshetti, D.B. Shinde, One pot synthesis and SAR of some novel 3-substituted 5,6-diphenyl-1,2,4-triazines as antifungal agents, Bioorg. Med. Chem. Lett. 20 (2010) 742-745.

    18. [18]

      [18] J.N. Sangshetti, R.R. Nagawade, D.B. Shinde, Synthesis of novel 3-(1-(1-substituted piperidin-4-yl)-1H-1,2,3-triazol-4-yl)-1,2,4-oxadiazol-5(4H)-one as antifungal agents, Bioorg. Med. Chem. Lett. 19 (2009) 3564-3567.

    19. [19]

      [19] J.N. Sangshetti, D.B. Shinde, Synthesis and SAR of some new 4-substituted 3H-1,2,3,5-oxathiadiazole 2-oxides as antifungal agents, Lett. Drug Des. Discov. 7 (2010) 171-175.

    20. [20]

      [20] J.N. Sangshetti, D.B. Shinde, Synthesis of some novel 3-(1-(1-substitutedpiperidin-4-yl)-1H-1,2,3-triazol-4-yl)-5-substituted phenyl-1,2,4-oxadiazoles as antifungal agents, Eur. J. Med. Chem. 46 (2011) 1040-1044.

    21. [21]

      [21] J.N. Sangshetti, D.B. Shinde, A.P. Sarkate, Synthesis, antifungal activity and docking study of some new 1,2,4-triazole analogs, Chem. Biol. Drug Des. 78 (2011) 800-809.

    22. [22]

      [22] V.P. Modi, P.N. Patel, H.S. Patel, Synthesis, spectral investigation and biological evaluation of novel noncytotoxic tetrahydrothieno [3,2-c]pyridine hydrazide derivatives, Der Pharmacia Lett. 3 (2011) 120-133.

    23. [23]

      [23] J.N. Sangshetti, P.D. Priyanka, S.C. Rashmi, et al., Microwave assisted nano (ZnO-TiO2) catalyzed synthesis of some new 4,5,6,7-tetrahydro-6-((5-substituted-1,3,4-oxadiazol-2-yl) methyl) thieno[2,3-c] pyridine as antimicrobial agents, Bioorg. Med. Chem. Lett. 23 (2013) 2250-2253.

    24. [24]

      [24] D. Greenwood, R.C.B. Slack, J.F. Peutherer, Medical Microbiology, 4th ed., ELBS, London, 1992.

    25. [25]

      [25] R.W. Hooft, G. Vriend, C. Sander, E.E. Abola, Errors in protein structures, Nature 381 (1996) 272.

    26. [26]

      [26] VLife Molecular Design Suite 4.3, VLife Sciences Technologies Pvt. Ltd., www.Vlifesciences. com.

    27. [27]

      [27] D. Lagorce, H. Sperandio, M.A. Miteva, et al., FAF-Drugs2: free ADME/tox filtering tool to assist drug discovery and chemical biology projects, BMC Bioinformatics 9 (2008) 396.

    28. [28]

      [28] C.A. Lipinski, F. Lombardo, B.W. Dominy, et al., Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv. Drug Deliv. Rev. 46 (2001) 3-26.

    29. [29]

      [29] P. Ertl, B. Rohde, P. Selzer, Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties, J. Med. Chem. 43 (2000) 3714-3717.

  • 加载中
    1. [1]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    2. [2]

      Yun-Feng LiuHui-Fang DuYa-Hui ZhangZhi-Qin LiuXiao-Qian QiDu-Qiang LuoFei Cao . Chaeglobol A, an unusual octocyclic sterol with antifungal activity from the marine-derived fungus Chaetomium globosum HBU-45. Chinese Chemical Letters, 2025, 36(3): 109858-. doi: 10.1016/j.cclet.2024.109858

    3. [3]

      Qian WuMengda XuTianjiao MaShuzhen YanJin LiXuesong Jiang . Chalcone-derived oxime esters with efficient photoinitiation properties under LED irradiation. Chinese Chemical Letters, 2025, 36(3): 110427-. doi: 10.1016/j.cclet.2024.110427

    4. [4]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    5. [5]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    6. [6]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    7. [7]

      Chunhua MaMengjiao LiuSiyu OuyangZhenwei CuiJingjing BiYuqin JiangZhiguo Zhang . Metal-free construction of diverse 1,2,4-triazolo[1,5-a]pyridines on water. Chinese Chemical Letters, 2025, 36(1): 109755-. doi: 10.1016/j.cclet.2024.109755

    8. [8]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    9. [9]

      Fuyun ChiMan ZhangYiman HanFukui ShenShijie PengBo SuYuanyuan HouGang Bai . Covalent modulation of mPGES1 activity via α,β-unsaturated aldehyde group: Implications for downregulating PGE2 expression and antipyretic response. Chinese Chemical Letters, 2025, 36(4): 109913-. doi: 10.1016/j.cclet.2024.109913

    10. [10]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    11. [11]

      Honglin Gao Chunlin Yuan Hongyu Chen Aiyi Dong Pan Gao Guangjin Hou . Surface gallium hydride on Ga2O3 polymorphs: A comparative solid-state NMR study. Chinese Journal of Structural Chemistry, 2025, 44(4): 100561-100561. doi: 10.1016/j.cjsc.2025.100561

    12. [12]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    13. [13]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

    14. [14]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    15. [15]

      Yiwen XuChaozheng HeChenxu ZhaoLing Fu . Single-atom Ti doping on S-vacancy two-dimensional CrS2 as a catalyst for ammonia synthesis: A DFT study. Chinese Chemical Letters, 2025, 36(4): 109797-. doi: 10.1016/j.cclet.2024.109797

    16. [16]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    17. [17]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    18. [18]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    19. [19]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    20. [20]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

Metrics
  • PDF Downloads(0)
  • Abstract views(582)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return