Citation:
Mehul B. Kanani, Manish P. Patel. Synthesis of N-arylquinolone derivatives bearing 2-thiophenoxyquinolines and their antimicrobial evaluation[J]. Chinese Chemical Letters,
;2014, 25(7): 1073-1076.
doi:
10.1016/j.cclet.2014.04.002
-
A new series of 2-thiophenoxyquinolines based trifluoromethyl substituted N-aryl quinolone derivatives 8a-f and 9a-f have been synthesized via a one-pot multicomponent reaction. In vitro antimicrobial activity of the synthesized compounds was investigated against a representative panel of pathogenic strains. Compounds 8c, 9c and 9e exhibited comparable antimicrobial activity to first line drugs.
-
-
-
[1]
[1] (a) J. Zhu, H. Bienayme, Multicomponent Reactions, Wiley-VCH, Weinheim, 2005; (b) H. Bienayme, C. Hulme, G. Oddon, P. Schmitt, Maximizing synthetic efficiency: multi-component transformations lead the way, Chem. Eur. J. 6 (2000) 3321-3329; (c) A. Dömling, I. Ugi, Multicomponent reactions with isocyanides, Angew. Chem. Int. Ed. 39 (2000) 3168-3210.
-
[2]
[2] Z. Huang, Y. Hu, Y. Zhou, D. Shi, Efficient one-pot three-component synthesis of fused pyridine derivatives in ionic liquid, ACS Comb. Sci. 13 (2011) 45-49.
-
[3]
[3] H. Koga, A. Itoh, S. Murayama, S. Suzue, T. Irikura, The fluoroquinolones: structures, mechanisms of action and resistance, and spectra of activity in vivo, J. Med. Chem. 23 (198') 1358-1365.
-
[4]
[4] D.C. Hooper, J.C. Wifson, The fluoroquinolones: pharmacology, clinical uses, and toxicities in humans, Antimicrob. Agents Chemother. 28 (1985) 716-721.
-
[5]
[5] P.C. Sharma, A. Jain, S. Jain, R. Pahwa, M.S.J. Yar, Ciprofloxacin: review on developments in synthetic, analytical, and medicinal aspects, Enzyme Inhib. Med. Chem. 25 (2009) 577-583.
-
[6]
[6] M.L. Liu, H.Y. Guo, Evolution of the quinolones antibacterial agents, Yakushigaku Zasshi 27 (2006) 69-76.
-
[7]
[7] (a) J.A. Makawana, M.P. Patel, R.G. Patel, Synthesis and in vitro antimicrobial activity of N-arylquinoline derivatives bearing 2-morpholinoquinoline moiety, Chin. Chem. Lett. 23 (2012) 427-430; (b) H.G. Kathrotiya, M.P. Patel, Synthesis and identification of β-aryloxyquinoline based diversely fluorine substituted N-aryl quinolone derivatives as a new class of antimicrobial, antituberculosis and antioxidant agents, Eur. J. Med. Chem. 63 (2013) 675-684.
-
[8]
[8] (a) H.G. Kathrotiya, N.A. Patel, R.G. Patel, M.P. Patel, An efficient synthesis of quinolinyl substituted imidazole-5-one derivatives catalyzed by zeolite and their antimicrobial activity, Chin. Chem. Lett. 23 (2012) 273-276; (b) D.C. Mungra, M.P. Patel, D.P. Rajani, R.G. Patel, Synthesis and ide ntification of β-aryloxyquinolines and their pyrano[3,2-c]chromene derivatives as a new class of antimic robial and antituberculosis agents, Eur. J. Med. Chem. 46 (2011) 4192-4200.
-
[9]
[9] N.M. Shah, M.P. Patel, R.G. Patel, New N-arylamino biquinoline derivatives: synthesis, antimicrobial, antituberculosis, and antimalarial evaluation, Eur. J. Med. Chem. 54 (2012) 239-247.
-
[10]
[10] H.H. Jardosh, M.P. Patel, Design and synthesis of biquinolone-isoniazid hybrids as a new class of antitubercular and antimicrobial agents, Eur. J. Med. Chem. 65 (2013) 348-359.
-
[11]
[11] J.A. Makawana, D.C. Mungra, M.P. Patel, R.G. Patel, Microwave assisted synthesis and antimicrobial evaluation of new fused pyran derivatives bearing 2-morpholinoquinoline nucleus, Bioorg. Med. Chem. Lett. 21 (2011) 6166-6169.
-
[12]
[12] (a) W.D. Wilson, M. Zhao, S.E. Patterson, et al., Design of RNA interactive anti-HIV agents: unfused aromatic intercalators, Med. Chem. Res. 2 (1992) 102-110; (b) J.X. Wang, Q. Guo, Y. Chai, et al., Synthesis and in vitro antibacterial activities of 7-(4-alkoxyimino-3-hydroxypiperdin-1-yl)quinolone derivatives, Chin. Chem. Lett. 21 (2010) 55-58.
-
[13]
[13] P.A. Leatham, H.A. Bird, V. Wright, D. Seymour, A. Gordon, A double blind study of antrafenine, naproxen and placebo in osteoarthrosis, Eur. J. Rheumatol. Inflamm. 6 (1983) 209-211.
-
[14]
[14] L. Strekowski, J.L. Mokrosz, V.A. Honkan, et al., Synthesis and quantitative structure-activity relationship analysis of 2-(aryl or heteroaryl)quinolin-4-amines, a new class of anti-HIV-1 agents, J. Med. Chem. 34 (1991) 1739-1746.
-
[15]
[15] W.A. Denny, W.R. Wilson, D.C. Ware, et al., U.S. Patent 7,064,117 (2006).
-
[16]
[16] (a) K. Muller, C. Faeh, F. Diederich, Fluorine in pharmaceuticals: looking beyond intuition, Science 317 (2007) 1881-1886; (b) S. Purser, P.R. Moore, S. Swallow, V. Gouverneur, Fluorine in medicinal chemistry, Chem. Soc. Rev. 37 (2008) 320-330.
-
[17]
[17] T. Nagai, G. Nishioka, M. Koyama, et al., Reactions of trifluoromethyl ketones. IX. Investigation of the steric effect of a trifluoromethyl group based on the stereochemistry on the dehydration of trifluoromethyl homoallyl alcohols, J. Fluorine Chem. 57 (1992) 229-234.
-
[18]
[18] K.J. Palmer, S.M. Holliday, R.N. Brogden, Mefloquine: a review of its antimalarial activity, pharmacokinetic properties and therapeutic efficacy, Drugs 45 (1993) 430-475.
-
[19]
[19] (a) J.P. Rocher, B. Bonnet, C. Bolea, et al., mGluR5 negative allosteric modulators overview: a medicinal chemistry approach towards a series of novel therapeutic agents, Curr. Top. Med. Chem. 11 (2011) 680-695; (b) A.L. Rodriguez, M.D. Grier, C.K. Jones, et al., Discovery of novel allosteric modulators of metabotropic glutamate receptor subtype 5 reveals chemical and functional diversity and in vivo activity in rat behavioral models of anxiolytic and antipsychotic activity, Mol. Pharmacol. 78 (2010) 1105-1123.
-
[20]
[20] O. Meth-Cohn, N.A. Bramha, A versatile new synthesis of quinolines, thienopyridine and related fused pyridines, Tetrahedron Lett. 23 (1978) 2045-2048.
-
[21]
[21] National Committee for Clinical Laboratory Standards (NCCLS), 940, West Valley Road, Suite 1400, Wayne, Pennsylvania 19087-1898, USA. Performance standards for antimicrobial susceptibility testing; Twelfth Informational Supplement (ISBN 1-56238-454-6), M100-S12 M7 (2002).
-
[1]
-
-
-
[1]
Xiangan Song , Shaogang Shen , Mengyao Lu , Ying Wang , Yong Zhang . Trifluoromethyl enable high-performance single-emitter white organic light-emitting devices based on quinazoline acceptor. Chinese Chemical Letters, 2024, 35(4): 109118-. doi: 10.1016/j.cclet.2023.109118
-
[2]
Yu Mao , Yilin Liu , Xiaochen Wang , Shengyang Ni , Yi Pan , Yi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443
-
[3]
Guangyao Wang , Zhitong Xu , Ye Qi , Yueguang Fang , Guiling Ning , Junwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503
-
[4]
Yuexiang Liu , Xiangqiao Yang , Tong Lin , Guantian Yang , Xiaoyong Xu , Bubing Zeng , Zhong Li , Weiping Zhu , Xuhong Qian . Efficient continuous synthesis of 2-[3-(trifluoromethyl)phenyl]malonic acid, a key intermediate of Triflumezopyrim, coupling with esterification-condensation-hydrolysis. Chinese Chemical Letters, 2025, 36(1): 109747-. doi: 10.1016/j.cclet.2024.109747
-
[5]
Jianhui Yin , Wenjing Huang , Changyong Guo , Chao Liu , Fei Gao , Honggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244
-
[6]
Hong Zhang , Cui-Ping Li , Li-Li Wang , Zhuo-Da Zhou , Wen-Sen Li , Ling-Yi Kong , Ming-Hua Yang . Asperochones A and B, two antimicrobial aromatic polyketides from the endophytic fungus Aspergillus sp. MMC-2. Chinese Chemical Letters, 2024, 35(9): 109351-. doi: 10.1016/j.cclet.2023.109351
-
[7]
Lei Shen , Hongmei Liu , Ming Jin , Jinchao Zhang , Caixia Yin , Shuxiang Wang , Yutao Yang . “Three-in-one” strategy of trifluoromethyl regulated blood-brain barrier permeable fluorescent probe for peroxynitrite and antiepileptic evaluation of edaravone. Chinese Chemical Letters, 2024, 35(10): 109572-. doi: 10.1016/j.cclet.2024.109572
-
[8]
Han Yuan , Fengcai Zhang , Hongzhe Huang , Jiafei Wu , Yi Yang , Wanyi Huang , Dongjing Yang , Zhuoming Li , Zhe Li , Ling Huang , Yi-You Huang , Hai-Bin Luo , Lei Guo . Discovery of 3-trifluoromethyl-substituted pyrazoles as selective phosphodiesterase 10A inhibitors for orally attenuating isoprenaline-induced cardiac hypertrophy. Chinese Chemical Letters, 2025, 36(4): 109965-. doi: 10.1016/j.cclet.2024.109965
-
[9]
Zixu Xie , Pengfei Zhang , Ziyao Zhang , Chen Chen , Xing Wang . The choice of antimicrobial polymers: Hydrophilic or hydrophobic?. Chinese Chemical Letters, 2024, 35(9): 109768-. doi: 10.1016/j.cclet.2024.109768
-
[10]
Xiangyuan Zhao , Jinjin Wang , Jinzhao Kang , Xiaomei Wang , Hong Yu , Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159
-
[11]
Anqiu LIU , Long LIN , Dezhi ZHANG , Junyu LEI , Kefeng WANG , Wei ZHANG , Junpeng ZHUANG , Haijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424
-
[12]
Bin Dong , Ning Yu , Qiu-Yue Wang , Jing-Ke Ren , Xin-Yu Zhang , Zhi-Jie Zhang , Ruo-Yao Fan , Da-Peng Liu , Yong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221
-
[13]
Jia Chen , Yun Liu , Zerong Long , Yan Li , Hongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463
-
[14]
Sanmei Wang , Dengxin Yan , Wenhua Zhang , Liangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611
-
[15]
Jian Song , Shenghui Wang , Qiuge Liu , Xiao Wang , Shuo Yuan , Hongmin Liu , Saiyang Zhang . N-Benzyl arylamide derivatives as novel and potent tubulin polymerization inhibitors against gastric cancers: Design, structure–activity relationships and biological evaluations. Chinese Chemical Letters, 2025, 36(2): 109678-. doi: 10.1016/j.cclet.2024.109678
-
[16]
Cailiang Yue , Nan Sun , Yixing Qiu , Linlin Zhu , Zhiling Du , Fuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698
-
[17]
Simin Wei , Yaqing Yang , Junjie Li , Jialin Wang , Jinlu Tang , Ningning Wang , Zhaohui Li . The Mn/Yb/Er triple-doped CeO2 nanozyme with enhanced oxidase-like activity for highly sensitive ratiometric detection of nitrite. Chinese Chemical Letters, 2024, 35(6): 109114-. doi: 10.1016/j.cclet.2023.109114
-
[18]
Peng Zhang , Yitao Yang , Tian Qin , Xueqiu Wu , Yuechang Wei , Jing Xiong , Xi Liu , Yu Wang , Zhen Zhao , Jinqing Jiao , Liwei Chen . Interface engineering of Pt/CeO2-{100} catalysts for enhancing catalytic activity in auto-exhaust carbon particles oxidation. Chinese Chemical Letters, 2025, 36(2): 110396-. doi: 10.1016/j.cclet.2024.110396
-
[19]
Fuyun Chi , Man Zhang , Yiman Han , Fukui Shen , Shijie Peng , Bo Su , Yuanyuan Hou , Gang Bai . Covalent modulation of mPGES1 activity via α,β-unsaturated aldehyde group: Implications for downregulating PGE2 expression and antipyretic response. Chinese Chemical Letters, 2025, 36(4): 109913-. doi: 10.1016/j.cclet.2024.109913
-
[20]
Tian-Yu Gao , Xiao-Yan Mo , Shu-Rong Zhang , Yuan-Xu Jiang , Shu-Ping Luo , Jian-Heng Ye , Da-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(627)
- HTML views(0)