Citation: Mehul B. Kanani, Manish P. Patel. Synthesis of N-arylquinolone derivatives bearing 2-thiophenoxyquinolines and their antimicrobial evaluation[J]. Chinese Chemical Letters, ;2014, 25(7): 1073-1076. doi: 10.1016/j.cclet.2014.04.002 shu

Synthesis of N-arylquinolone derivatives bearing 2-thiophenoxyquinolines and their antimicrobial evaluation

  • Corresponding author: Manish P. Patel, 
  • Received Date: 3 December 2013
    Available Online: 25 March 2014

  • A new series of 2-thiophenoxyquinolines based trifluoromethyl substituted N-aryl quinolone derivatives 8a-f and 9a-f have been synthesized via a one-pot multicomponent reaction. In vitro antimicrobial activity of the synthesized compounds was investigated against a representative panel of pathogenic strains. Compounds 8c, 9c and 9e exhibited comparable antimicrobial activity to first line drugs.
  • 加载中
    1. [1]

      [1] (a) J. Zhu, H. Bienayme, Multicomponent Reactions, Wiley-VCH, Weinheim, 2005; (b) H. Bienayme, C. Hulme, G. Oddon, P. Schmitt, Maximizing synthetic efficiency: multi-component transformations lead the way, Chem. Eur. J. 6 (2000) 3321-3329; (c) A. Dömling, I. Ugi, Multicomponent reactions with isocyanides, Angew. Chem. Int. Ed. 39 (2000) 3168-3210.

    2. [2]

      [2] Z. Huang, Y. Hu, Y. Zhou, D. Shi, Efficient one-pot three-component synthesis of fused pyridine derivatives in ionic liquid, ACS Comb. Sci. 13 (2011) 45-49.

    3. [3]

      [3] H. Koga, A. Itoh, S. Murayama, S. Suzue, T. Irikura, The fluoroquinolones: structures, mechanisms of action and resistance, and spectra of activity in vivo, J. Med. Chem. 23 (198') 1358-1365.

    4. [4]

      [4] D.C. Hooper, J.C. Wifson, The fluoroquinolones: pharmacology, clinical uses, and toxicities in humans, Antimicrob. Agents Chemother. 28 (1985) 716-721.

    5. [5]

      [5] P.C. Sharma, A. Jain, S. Jain, R. Pahwa, M.S.J. Yar, Ciprofloxacin: review on developments in synthetic, analytical, and medicinal aspects, Enzyme Inhib. Med. Chem. 25 (2009) 577-583.

    6. [6]

      [6] M.L. Liu, H.Y. Guo, Evolution of the quinolones antibacterial agents, Yakushigaku Zasshi 27 (2006) 69-76.

    7. [7]

      [7] (a) J.A. Makawana, M.P. Patel, R.G. Patel, Synthesis and in vitro antimicrobial activity of N-arylquinoline derivatives bearing 2-morpholinoquinoline moiety, Chin. Chem. Lett. 23 (2012) 427-430; (b) H.G. Kathrotiya, M.P. Patel, Synthesis and identification of β-aryloxyquinoline based diversely fluorine substituted N-aryl quinolone derivatives as a new class of antimicrobial, antituberculosis and antioxidant agents, Eur. J. Med. Chem. 63 (2013) 675-684.

    8. [8]

      [8] (a) H.G. Kathrotiya, N.A. Patel, R.G. Patel, M.P. Patel, An efficient synthesis of quinolinyl substituted imidazole-5-one derivatives catalyzed by zeolite and their antimicrobial activity, Chin. Chem. Lett. 23 (2012) 273-276; (b) D.C. Mungra, M.P. Patel, D.P. Rajani, R.G. Patel, Synthesis and ide ntification of β-aryloxyquinolines and their pyrano[3,2-c]chromene derivatives as a new class of antimic robial and antituberculosis agents, Eur. J. Med. Chem. 46 (2011) 4192-4200.

    9. [9]

      [9] N.M. Shah, M.P. Patel, R.G. Patel, New N-arylamino biquinoline derivatives: synthesis, antimicrobial, antituberculosis, and antimalarial evaluation, Eur. J. Med. Chem. 54 (2012) 239-247.

    10. [10]

      [10] H.H. Jardosh, M.P. Patel, Design and synthesis of biquinolone-isoniazid hybrids as a new class of antitubercular and antimicrobial agents, Eur. J. Med. Chem. 65 (2013) 348-359.

    11. [11]

      [11] J.A. Makawana, D.C. Mungra, M.P. Patel, R.G. Patel, Microwave assisted synthesis and antimicrobial evaluation of new fused pyran derivatives bearing 2-morpholinoquinoline nucleus, Bioorg. Med. Chem. Lett. 21 (2011) 6166-6169.

    12. [12]

      [12] (a) W.D. Wilson, M. Zhao, S.E. Patterson, et al., Design of RNA interactive anti-HIV agents: unfused aromatic intercalators, Med. Chem. Res. 2 (1992) 102-110; (b) J.X. Wang, Q. Guo, Y. Chai, et al., Synthesis and in vitro antibacterial activities of 7-(4-alkoxyimino-3-hydroxypiperdin-1-yl)quinolone derivatives, Chin. Chem. Lett. 21 (2010) 55-58.

    13. [13]

      [13] P.A. Leatham, H.A. Bird, V. Wright, D. Seymour, A. Gordon, A double blind study of antrafenine, naproxen and placebo in osteoarthrosis, Eur. J. Rheumatol. Inflamm. 6 (1983) 209-211.

    14. [14]

      [14] L. Strekowski, J.L. Mokrosz, V.A. Honkan, et al., Synthesis and quantitative structure-activity relationship analysis of 2-(aryl or heteroaryl)quinolin-4-amines, a new class of anti-HIV-1 agents, J. Med. Chem. 34 (1991) 1739-1746.

    15. [15]

      [15] W.A. Denny, W.R. Wilson, D.C. Ware, et al., U.S. Patent 7,064,117 (2006).

    16. [16]

      [16] (a) K. Muller, C. Faeh, F. Diederich, Fluorine in pharmaceuticals: looking beyond intuition, Science 317 (2007) 1881-1886; (b) S. Purser, P.R. Moore, S. Swallow, V. Gouverneur, Fluorine in medicinal chemistry, Chem. Soc. Rev. 37 (2008) 320-330.

    17. [17]

      [17] T. Nagai, G. Nishioka, M. Koyama, et al., Reactions of trifluoromethyl ketones. IX. Investigation of the steric effect of a trifluoromethyl group based on the stereochemistry on the dehydration of trifluoromethyl homoallyl alcohols, J. Fluorine Chem. 57 (1992) 229-234.

    18. [18]

      [18] K.J. Palmer, S.M. Holliday, R.N. Brogden, Mefloquine: a review of its antimalarial activity, pharmacokinetic properties and therapeutic efficacy, Drugs 45 (1993) 430-475.

    19. [19]

      [19] (a) J.P. Rocher, B. Bonnet, C. Bolea, et al., mGluR5 negative allosteric modulators overview: a medicinal chemistry approach towards a series of novel therapeutic agents, Curr. Top. Med. Chem. 11 (2011) 680-695; (b) A.L. Rodriguez, M.D. Grier, C.K. Jones, et al., Discovery of novel allosteric modulators of metabotropic glutamate receptor subtype 5 reveals chemical and functional diversity and in vivo activity in rat behavioral models of anxiolytic and antipsychotic activity, Mol. Pharmacol. 78 (2010) 1105-1123.

    20. [20]

      [20] O. Meth-Cohn, N.A. Bramha, A versatile new synthesis of quinolines, thienopyridine and related fused pyridines, Tetrahedron Lett. 23 (1978) 2045-2048.

    21. [21]

      [21] National Committee for Clinical Laboratory Standards (NCCLS), 940, West Valley Road, Suite 1400, Wayne, Pennsylvania 19087-1898, USA. Performance standards for antimicrobial susceptibility testing; Twelfth Informational Supplement (ISBN 1-56238-454-6), M100-S12 M7 (2002).

  • 加载中
    1. [1]

      Xiangan SongShaogang ShenMengyao LuYing WangYong Zhang . Trifluoromethyl enable high-performance single-emitter white organic light-emitting devices based on quinazoline acceptor. Chinese Chemical Letters, 2024, 35(4): 109118-. doi: 10.1016/j.cclet.2023.109118

    2. [2]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    3. [3]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    4. [4]

      Yuexiang LiuXiangqiao YangTong LinGuantian YangXiaoyong XuBubing ZengZhong LiWeiping ZhuXuhong Qian . Efficient continuous synthesis of 2-[3-(trifluoromethyl)phenyl]malonic acid, a key intermediate of Triflumezopyrim, coupling with esterification-condensation-hydrolysis. Chinese Chemical Letters, 2025, 36(1): 109747-. doi: 10.1016/j.cclet.2024.109747

    5. [5]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    6. [6]

      Hong ZhangCui-Ping LiLi-Li WangZhuo-Da ZhouWen-Sen LiLing-Yi KongMing-Hua Yang . Asperochones A and B, two antimicrobial aromatic polyketides from the endophytic fungus Aspergillus sp. MMC-2. Chinese Chemical Letters, 2024, 35(9): 109351-. doi: 10.1016/j.cclet.2023.109351

    7. [7]

      Lei ShenHongmei LiuMing JinJinchao ZhangCaixia YinShuxiang WangYutao Yang . “Three-in-one” strategy of trifluoromethyl regulated blood-brain barrier permeable fluorescent probe for peroxynitrite and antiepileptic evaluation of edaravone. Chinese Chemical Letters, 2024, 35(10): 109572-. doi: 10.1016/j.cclet.2024.109572

    8. [8]

      Han YuanFengcai ZhangHongzhe HuangJiafei WuYi YangWanyi HuangDongjing YangZhuoming LiZhe LiLing HuangYi-You HuangHai-Bin LuoLei Guo . Discovery of 3-trifluoromethyl-substituted pyrazoles as selective phosphodiesterase 10A inhibitors for orally attenuating isoprenaline-induced cardiac hypertrophy. Chinese Chemical Letters, 2025, 36(4): 109965-. doi: 10.1016/j.cclet.2024.109965

    9. [9]

      Zixu XiePengfei ZhangZiyao ZhangChen ChenXing Wang . The choice of antimicrobial polymers: Hydrophilic or hydrophobic?. Chinese Chemical Letters, 2024, 35(9): 109768-. doi: 10.1016/j.cclet.2024.109768

    10. [10]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    11. [11]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    12. [12]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    13. [13]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

    14. [14]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    15. [15]

      Jian SongShenghui WangQiuge LiuXiao WangShuo YuanHongmin LiuSaiyang ZhangN-Benzyl arylamide derivatives as novel and potent tubulin polymerization inhibitors against gastric cancers: Design, structure–activity relationships and biological evaluations. Chinese Chemical Letters, 2025, 36(2): 109678-. doi: 10.1016/j.cclet.2024.109678

    16. [16]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    17. [17]

      Simin WeiYaqing YangJunjie LiJialin WangJinlu TangNingning WangZhaohui Li . The Mn/Yb/Er triple-doped CeO2 nanozyme with enhanced oxidase-like activity for highly sensitive ratiometric detection of nitrite. Chinese Chemical Letters, 2024, 35(6): 109114-. doi: 10.1016/j.cclet.2023.109114

    18. [18]

      Peng ZhangYitao YangTian QinXueqiu WuYuechang WeiJing XiongXi LiuYu WangZhen ZhaoJinqing JiaoLiwei Chen . Interface engineering of Pt/CeO2-{100} catalysts for enhancing catalytic activity in auto-exhaust carbon particles oxidation. Chinese Chemical Letters, 2025, 36(2): 110396-. doi: 10.1016/j.cclet.2024.110396

    19. [19]

      Fuyun ChiMan ZhangYiman HanFukui ShenShijie PengBo SuYuanyuan HouGang Bai . Covalent modulation of mPGES1 activity via α,β-unsaturated aldehyde group: Implications for downregulating PGE2 expression and antipyretic response. Chinese Chemical Letters, 2025, 36(4): 109913-. doi: 10.1016/j.cclet.2024.109913

    20. [20]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

Metrics
  • PDF Downloads(0)
  • Abstract views(628)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return