Citation: Xuan Zhang, Xu-Dong Li. Solvent atmosphere controlled self-assembly of unmodified C60:A facile approach for constructing various architectures[J]. Chinese Chemical Letters, ;2014, 25(6): 912-914. doi: 10.1016/j.cclet.2014.03.041 shu

Solvent atmosphere controlled self-assembly of unmodified C60:A facile approach for constructing various architectures

  • Corresponding author: Xuan Zhang, 
  • Received Date: 15 January 2014
    Available Online: 18 March 2014

    Fund Project: This work was financially supported by the Innovation Program of Shanghai Municipal Education Commission (No. 12ZZ067) (No. 12ZZ067) Shanghai Pujiang Program (No. 11PJ1400200) (No. 11PJ1400200) the Research Fund for the Doctoral Program of Higher Education of China (No. 20120075120018) (No. 20120075120018)

  • A facile approach for constructing diverse architectures of unmodified C60 was developed via simple evaporation of pure C60 solution in CS2 under various poor solvent atmospheres. Diverse architectures such as belts, sheets, and starfishes were successfully constructed under different experimental conditions. C60 belts obtained under EtOH atmosphere were confirmed to be a face-centered cubic (fcc) structure. The solvent atmospheres not only slowed down the evaporation speed, but also could reorganize the self-assembly of C60 by partially re-dissolving the initially formed architectures. This concept represents a novel method for preparation of nanostructures of C60 and could also be applied for controlling of the self-assembly of other functional organic molecules.
  • 加载中
    1. [1]

      [1] L.M. Dai, D.W. Chang, J.B. Baek, W. Lu, Carbon nanomaterials for advanced energy conversion and storage, Small 8 (2012) 1130-1166.

    2. [2]

      [2] G.V. Dubacheva, C.K. Liang, D.M. Bassani, Functional monolayers from carbon nanostructures-fullerenes, carbon nanotubes, and graphene-as novel materials for solar energy conversion, Coord. Chem. Rev. 256 (2012) 2628-2639.

    3. [3]

      [3] S.L. Candelaria, Y.Y. Shao, W. Zhou, et al., Nanostructured carbon for energy storage and conversion, Nano Energy 1 (2012) 195-220.

    4. [4]

      [4] D. Jariwala, V.K. Sangwan, L.J. Lauhon, T.J. Marks, M.C. Hersam, Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing, Chem. Soc. Rev. 42 (2013) 2824-2860.

    5. [5]

      [5] S. Kouijzer, J.L. Michels, M. van den Berg, et al., Predicting morphologies of solution processed polymer:fullerene blends, J. Am. Chem. Soc. 135 (2013) 12057-12067.

    6. [6]

      [6] M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, et al., Morphology evolution via selforganization and lateral and vertical diffusion in polymer: fullerene solar cell blends, Nat. Mater. 7 (2008) 158-164.

    7. [7]

      [7] J. Peet, M.L. Senatore, A.J. Heeger, G.C. Bazan, The role of processing in the fabrication and optimization of plastic solar cells, Adv. Mater. 21 (2009) 1521-1527.

    8. [8]

      [8] L.K. Shrestha, Q.M. Ji, T. Mori, et al., Fullerene nanoarchitectonics: from zero to higher dimensions, Chem. Asian J. 8 (2013) 1662-1679.

    9. [9]

      [9] S.S. Babu, H. Möhwald, T. Nakanishi, Recent progresses in morphology control of supramolecular fullerene assemblies and its applications, Chem. Soc. Rev. 39 (2010) 4021-4035.

    10. [10]

      [10] Z. Tan, A. Masuhara, H. Kasai, H. Nakanishi, H. Oikawa, Multibranched C60 micro/nanocrystals fabricated by reprecipitation method, Jpn. J. Appl. Phys. 47 (2008) 1426-1428.

    11. [11]

      [11] J. Geng, W. Zhou, P. Skelton, et al., Crystal structure and growth mechanism of unusually long fullerene (C60) nanowires, J. Am. Chem. Soc. 130 (2008) 2527-2534.

    12. [12]

      [12] K. Miyazawa, Y. Kuwasaki, A. Obayashi, K. Kuwabara, C60 nanowhiskers formed by the liquid-liquid interfacial precipitation method, J. Mater. Res. 17 (2002) 83-88.

    13. [13]

      [13] M. Sathish, K. Miyazawa, Size-tunable hexagonal fullerene (C60) nanosheets at the liquid-liquid interface, J. Am. Chem. Soc. 129 (2007) 13816-13817.

    14. [14]

      [14] X. Zhang, M. Takeuchi, Controlled fabrication of fullerene C60 into microspheres of nanoplates through porphyrin-polymer-assisted self-assembly, Angew. Chem. Int. Ed. 48 (2009) 9646-9651.

    15. [15]

      [15] T. Nakanishi, K. Ariga, T. Michinobu, et al., Flower-shaped supramolecular assemblies: hierarchical organization of a fullerene bearing long aliphatic chains, Small 3 (2007) 2019-2023.

    16. [16]

      [16] T. Homma, K. Harano, H. Isobe, E. Nakamura, Nanometer-sized fluorous fullerene vesicles in water and on solid surfaces, Angew. Chem. Int. Ed. 49 (2010) 1665-1668.

    17. [17]

      [17] X. Zhang, T. Nakanishi, T. Ogawa, et al., Flowerlike supramolecular architectures assembled from C60 equipped with a pyridine substituent, Chem. Commun. 46 (2010) 8752-8754.

    18. [18]

      [18] N.O. Mchedlov-Petrossyan, Fullerenes in liquid media: an unsettling intrusion into the solution chemistry, Chem. Rev. 113 (2013) 5149-5193.

    19. [19]

      [19] L. Wei, J.N. Yao, H.B. Fu, Solvent-assisted self-assembly of fullerene into singlecrystal ultrathin microribbons as highly sensitive UV-visible photodetectors, ACS Nano 7 (2013) 7573-7582.

    20. [20]

      [20] M.D. Doganci, H.Y. Erbil, Shape and diameter control of C60 fullerene micro-stains by evaporation of aqueous SDS-fullerene dispersion drops, Colloid Surf. A 432 (2013) 104-109.

    21. [21]

      [21] C. Park, H.J. Song, H.C. Choi, The critical effect of solvent geometry on the determination of fullerene (C60) self-assembly into dot, wire and disk structures, Chem. Commun. (2009) 4803-4805.

  • 加载中
    1. [1]

      Nianqiang JiangYiqiang OuYanpeng ZhuDingyong ZhongJiaobing Wang . Assembly of fullerenes using a highly preorganized janusarene. Chinese Chemical Letters, 2025, 36(4): 110004-. doi: 10.1016/j.cclet.2024.110004

    2. [2]

      Lijun MaoShuo LiXin ZhangZhan-Ting LiDa Ma . Cucurbit[n]uril-based nanostructure construction and modification. Chinese Chemical Letters, 2024, 35(8): 109363-. doi: 10.1016/j.cclet.2023.109363

    3. [3]

      Yuanpeng Ye Longfei Yao Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460

    4. [4]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    5. [5]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    6. [6]

      Kang WeiJiayu LiWen ZhangBing YuanMing-De LiPingwu Du . A strained π-extended [10]cycloparaphenylene carbon nanoring. Chinese Chemical Letters, 2024, 35(5): 109055-. doi: 10.1016/j.cclet.2023.109055

    7. [7]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    8. [8]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    9. [9]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    10. [10]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    11. [11]

      Feng CaoChunxiang XianTianqi YangYue ZhangHaifeng ChenXinping HeXukun QianShenghui ShenYang XiaWenkui ZhangXinhui Xia . Gelation-pyrolysis strategy for fabrication of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110575-. doi: 10.1016/j.cclet.2024.110575

    12. [12]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    13. [13]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    14. [14]

      Changlin SuWensheng CaiXueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095

    15. [15]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    16. [16]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    17. [17]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    18. [18]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    19. [19]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    20. [20]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

Metrics
  • PDF Downloads(0)
  • Abstract views(711)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return