Citation: Yu-Xin Zhang, Xiao-Dong Hao, Zeng-Peng Diao. Templated self-assembly of Au-TiO2 binary nanoparticles-nanotubes[J]. Chinese Chemical Letters, ;2014, 25(6): 874-878. doi: 10.1016/j.cclet.2014.03.038 shu

Templated self-assembly of Au-TiO2 binary nanoparticles-nanotubes

  • Corresponding author: Yu-Xin Zhang, 
  • Received Date: 30 December 2013
    Available Online: 18 March 2014

    Fund Project: The authors gratefully acknowledge the financial supports provided by National Natural Science Foundation of China (No. 51104194) (No. 51104194) Doctoral Fund of Ministry of Education of China (No. 20110191120014) (No. 20110191120014)

  • In this work, we developed a templated self-assembly approach to fabricate self-supporting Au/TiO2 binary nanoparticles-nanotubes (NPNTs) for the first time. The stable Au/TiO2 nanoparticles colloids were pre-synthesized and then deposited onto an AAO template, following by a mild calcination process. Au/TiO2 binary NPNTs can be achieved after removing the AAO template by NaOH solution. In addition, Au/TiO2 NPNTs with different thicknesses and size distributions could be achieved by tailoring the process parameters, such as the molar ratio of AuNPs to TiO2NPs, deposition modes and calcinations conditions. Therefore, these findings made controllable formation of Au/TiO2 NPNTs attractive for promising fabrication methodologies of metal/metal oxides NPNTs.
  • 加载中
    1. [1]

      [1] M. Lahav, T. Sehayek, A. Vaskevich, I. Rubinstein, Nanoparticle nanotubes, Angew. Chem. Int. Ed. 42 (2003) 5575-5579.

    2. [2]

      [2] C.H. Cui, S.H. Yu, Engineering interface and surface of noble metal nanoparticle nanotubes toward enhanced catalytic activity for fuel cell applications, Acc. Chem. Res. 46 (2013) 1427-1437.

    3. [3]

      [3] C.J. Pursell, B.D. Chandler, M. Manzoli, F. Boccuzzi, CO adsorption on supported gold nanoparticle catalysts: application of the Temkin model, J. Phys. Chem. C 116 (2012) 11117-11125.

    4. [4]

      [4] D. Widmann, R.J. Behm, Active oxygen on a Au/TiO2 catalyst: formation, stability, and CO oxidation activity, Angew. Chem. Int. Ed. 50 (2011) 10241-10245.

    5. [5]

      [5] I. Lee, J.B. Joo, Y. Yin, F. Zaera, A yolk@shell nanoarchitecture for Au/TiO2 catalysts, Angew. Chem. Int. Ed. 123 (2011) 10390-10393.

    6. [6]

      [6] P. Li, Z. Wei, T. Wu, Q. Peng, Y.D. Li, Au-ZnO hybrid nanopyramids and their photocatalytic properties, J. Am. Chem. Soc. 133 (2011) 5660-5663.

    7. [7]

      [7] Y.Q. He, N.N. Zhang, Y. Liu, et al., Facile synthesis and excellent catalytic activity of gold nanoparticles on graphene oxide, Chin. Chem. Lett. 23 (2012) 41-44.

    8. [8]

      [8] Y. Yu, L. Gu, X.Y. Lang, et al., Li storage in 3D nanoporous au-supported nanocrystalline tin, Adv. Mater. 23 (2011) 2443-2447.

    9. [9]

      [9] D. Balogh, R.T.V.R. Freeman, I. Willner, Photochemically and electrochemically triggered Au nanoparticles "Sponges", J. Am. Chem. Soc. 133 (2011) 6533-6536.

    10. [10]

      [10] C.M. Cobley, J.Y. Chen, E.C. Cho, L.V. Wang, Y.N. Xia, Gold nanostructures: a class of multifunctional materials for biomedical applications, Chem. Soc. Rev. 40 (2011) 44-56.

    11. [11]

      [11] Z. Deng, Y. Tian, S.H. Lee, A.E. Ribbe, C. Mao, DNA-encoded self-assembly of gold nanoparticles into one-dimensional arrays, Angew. Chem. Int. Ed. 44 (2005) 3582-3585.

    12. [12]

      [12] N. Wang, H.Y. Zhao, X.P. Ji, X.R. Li, B.B. Wang, Gold nanoparticles-enhanced bisphenol A electrochemical biosensor based on tyrosinase immobilized onto self-assembled monolayers-modified gold electrode, Chin. Chem. Lett. (2014), http://dx.doi.org/10.1016/j.cclet.2014.01.008.

    13. [13]

      [13] A.H. Bae, M. Numata, T. Hasegawa, et al., 1D arrangement of Au nanoparticles by the helical structure of schizophyllan: a unique encounter of a natural product with inorganic compounds, Angew. Chem. Int. Ed. 44 (2005) 2030-2033.

    14. [14]

      [14] Y.X. Zhang, H.C. Zeng, Template-free parallel one-dimensional assembly of gold nanoparticles, J. Phys. Chem. B 110 (2006) 16812-16815.

    15. [15]

      [15] E.R. Zubarev, J. Xu, A. Sayyad, J.D. Gibson, Amphiphilicity-driven organization of nanoparticles into discrete assemblies, J. Am. Chem. Soc. 128 (2006) 15098-15099.

    16. [16]

      [16] X. Gao, R. Djalali, A. Haboosheh, et al., Peptide nanotubes: simple separation using size-exclusion columns and use as templates for fabricating one-dimensional single chains of Au nanoparticles, Adv. Mater. 17 (2005) 1753-1757.

    17. [17]

      [17] M.A. Correa Duarte, L.M. Liz Marzan, Carbon nanotubes as templates for onedimensional nanoparticle assemblies, J. Mater. Chem. 16 (2006) 22-25.

    18. [18]

      [18] Y.X. Zhang, H.C. Zeng, Gold(I)-alkanethiolate nanotubes, Adv. Mater. 21 (2009) 4962-4965.

    19. [19]

      [19] P.C. Lansaker, J. Backholm, G.A. Niklasson, C.G. Granqvist, TiO2/Au/TiO2 multilayer thin films: novel metal-based transparent conductors for electrochromic devices, Thin Solid Films 518 (2009) 1225-1229.

    20. [20]

      [20] M. Torrell, R. Kabir, L. Cunha, et al., Tuning of the surface plasmon resonance in TiO2/Au thin films grown by magnetron sputtering: the effect of thermal annealing, J. Appl. Phys. 109 (2011) 074310.

    21. [21]

      [21] S.T. Kochuveedu, D.P. Kim, D.H. Kim, Surface-plasmon-induced visible light photocatalytic activity of TiO2 nanospheres decorated by Au nanoparticles with controlled configuration, J. Phys. Chem. C 116 (2012) 250'-2506.

    22. [22]

      [22] A.B. Haugen, I. Kumakiri, C. Simon, M.A. Einarsrud, TiO2, TiO2/Ag and TiO2/Au photocatalysts prepared by spray pyrolysis, J. Eur. Ceram. Soc. 31 (2011) 291-298.

    23. [23]

      [23] J. Li, H.C. Zeng, Preparation of monodisperse Au/TiO2 nanocatalysts via selfassembly, Chem. Mater. 18 (2006) 4270-4277.

    24. [24]

      [24] Y.L. Wu, Q.W. Li, X.L. Zhang, X. Chen, X.M. Wang, Glucose biosensor based on new carbon nanotube-gold-titania nano-composites modified glassy carbon electrode, Chin. Chem. Lett. 24 (2013) 1087-1090.

    25. [25]

      [25] Z.W. Seh, S. Liu, M. Low, et al., Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation, Adv. Mater. 24 (2012) 2310-2314.

    26. [26]

      [26] I.X. Green, W. Tang, M. Neurock, J.T. Yates, Localized partial oxidation of acetic acid at the dual perimeter sites of the Au/TiO2 catalyst-formation of gold ketenylidene, J. Am. Chem. Soc. 134 (2012) 13569-13572.

    27. [27]

      [27] I. Paramasivam, J.M. Macak, P. Schmuki, Photocatalytic activity of TiO2 nanotube layers loaded with Ag and Au nanoparticles, Electrochem. Commun. 10 (2008) 71-75.

    28. [28]

      [28] X.D. Hao, Y.X. Zhang, J. Liu, et al., One-step and controllable self-assembly of Au/TiO2/carbon spheres ternary nanocomposites with a nanoparticle monoshell wall, Nano 7 (2012) 1250025.

    29. [29]

      [29] Y.X. Zhang, M. Huang, X.D. Hao, et al., Suspended hybrid films assembled from thiol-capped gold nanoparticles, Nanoscale Res. Lett. 7 (2012) 295.

    30. [30]

      [30] Y. Wang, M. Wu, Z. Jiao, J.Y. Lee, One-dimensional SnO2 nanostructures: facile morphology tuning and lithium storage properties, Nanotechnology 20 (2009) 345-704.

    31. [31]

      [31] F.D. Wu, M. Wu, Y. Wang, Antimony-doped tin oxide nanotubes for high capacity lithium storage, Electrochem. Commun. 13 (2011) 433-436.

    32. [32]

      [32] Y. Gu, F.D. Wu, Y. Wang, Confined volume change in Sn-Co-C ternary tube-intube composites for high-capacity and long-life lithium storage, Adv. Funct. Mater. 23 (2013) 893-899.

    33. [33]

      [33] M. Brust, M. Walker, D. Bethell, D.J. Scjoffrin, R. Whyman, Synthesis of thiolderivatised gold nanoparticles in a two-phase liquid-liquid system, J. Chem. Soc. Chem. Commun. (1994) 801-802.

    34. [34]

      [34] Y.X. Zhang, H.C. Zeng, Gold sponges prepared via hydrothermally activated selfassembly of Au nanoparticles, J. Phys. Chem. C 111 (2007) 6970-6975.

    35. [35]

      [35] D. Pan, N. Zhao, Q. Wang, et al., Facile synthesis and characterization of luminescent TiO2 nanocrystals, Adv. Mater. (2005) 1991-1995.

    36. [36]

      [36] S. Xiong, Q. Wang, Y. Chen, Preparation of polyaniline/TiO2 hybrid microwires in the microchannels of a template, Mater. Chem. Phys. 103 (2007) 450-455.

    37. [37]

      [37] M. Lu, X.H. Li, H.L. Li, Synthesis and characterization of conducting copolymer nanofibrils of pyrrole and 3-methylthiophene using the template-synthesis method, Mater. Sci. Eng. A 334 (2002) 291-297.

    38. [38]

      [38] L. Yang, E. Guihen, J.D. Glennon, Alkylthiol gold nanoparticles in sol-gelbased open tubular capillary electrochromatography, J. Sep. Sci. 28 (2005) 757-766.

    39. [39]

      [39] P.J. Thistlethwaite, M.S. Hook, Diffuse reflectance fourier transform infrared study of the adsorption of oleate/oleic acid onto titania, Langmuir 16 (2000) 4993-4998.

  • 加载中
    1. [1]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    2. [2]

      Yuanpeng Ye Longfei Yao Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460

    3. [3]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    4. [4]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    5. [5]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    6. [6]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    7. [7]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    8. [8]

      Feng CaoChunxiang XianTianqi YangYue ZhangHaifeng ChenXinping HeXukun QianShenghui ShenYang XiaWenkui ZhangXinhui Xia . Gelation-pyrolysis strategy for fabrication of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110575-. doi: 10.1016/j.cclet.2024.110575

    9. [9]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    10. [10]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    11. [11]

      Yi ZhouWei ZhangRong FuJiaxin DongYuxuan LiuZihang SongHan HanKang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865

    12. [12]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    13. [13]

      Changlin SuWensheng CaiXueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095

    14. [14]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    15. [15]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    16. [16]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    17. [17]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    18. [18]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    19. [19]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    20. [20]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

Metrics
  • PDF Downloads(0)
  • Abstract views(664)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return