Citation:
Sunil U. Tekale, Vijay P. Pagore, Sushama S. Kauthale, Rajendra P. Pawar. La2O3/TFE:An efficient system for room temperature synthesis of Hantzsch polyhydroquinolines[J]. Chinese Chemical Letters,
;2014, 25(8): 1149-1152.
doi:
10.1016/j.cclet.2014.03.037
-
Lanthanum oxide (La2O3) in combination with 2,2,2-trifluoroethanol (TFE) was found to be an efficient system for the one-pot, four-component synthesis of Hantzsch polyhydroquinoline derivatives from aromatic aldehydes, dimedone, ethyl acetoacetate and ammonium acetate at ambient temperature. The catalyst is heterogeneous and reusable, hence can be separated easily and reused. The present method is featured by mild reaction conditions, use of heterogeneous catalyst, non-chromatographic purification, short reaction time and high yields, which make it an attractive route for the synthesis of polyhydroquinolines.
-
Keywords:
- Hantzsch polyhydroquinolines,
- La2O3,
- TFE
-
-
-
[1]
[1] V.A. Orru, E. Ruijter, Synthesis of Heterocycles via Multicomponent Reactions, I, Springer, Berlin, Heidelberg, 2010.
-
[2]
[2] C. Hulme, V. Gore, Multi-component reactions: emerging chemistry in drug discovery from xylocain to crixivan, Curr. Med. Chem. 10 (2003) 51-80.
-
[3]
[3] Y. Nishiya, N. Kosaka, M. Uchii, S. Sugimoto, A potent 1,4-dihydropyridine L-type calcium channel blocker, benidipine, promotes osteoblast differentiation, Calcif. Tissue Int. 70 (2002) 30-39.
-
[4]
[4] (a) K. Sirisha, G. Achaiah, V.M. Reddy, Facile synthesis and antibacterial, antitubercular, and anticancer activities of novel 1,4-dihydropyridines, Arch. Pharm. 343 (2010) 342-352; (b) R. van der Lee, M. Pfaffendorf, P.A. van Zwieten, The differential time courses of the vasodilator effects of various 1,4-dihydropyridines in isolated human small arteries are correlated to their lipophilicity, J. Hypertens. 18 (2000) 1677-1682.
-
[5]
[5] S. Yasar,M. Corrada, R. Brookmeyer, C. Kawas, Calcium channel blockers and risk of AD: the Baltimore longitudinal study of aging, Neurobiol. Aging 26 (2005) 157-163.
-
[6]
[6] M. Maheswara, V. Siddaiah, G. Lakishmi, V. Damu, C.V. Rao, An efficient one-pot synthesis of polyhydroquinoline derivatives via Hantzsch condensation using a heterogeneous catalyst under solvent-free conditions, Arkivoc ii (2006) 201-206.
-
[7]
[7] F.M. Moghaddam, H. Saeidian, Z. Mirjafary, A. Sadeghi, Rapid and efficient one-pot synthesis of 1,4-dihydropyridine and polyhydroquinoline derivatives through the Hantzsch four component condensation by zinc oxide, J. Iran. Chem. Soc. 6 (2009) 317-324.
-
[8]
[8] J. Safaei-Ghomi, M.A. Ghasemzadeh, Nanocrystalline copper(Ⅱ) oxide-catalyzed one-pot four component synthesis of polyhydroquinoline derivatives under solvent-free conditions, J. Nanostruct. 1 (2012) 243-248.
-
[9]
[9] S.B. Sapkal, K.F. Shelke, B.B. Shingate, M.S. Shingare, Nickel nanoparticle-catalyzed facile and efficient one-pot synthesis of polyhydroquinoline derivatives via Hantzsch condensation under solvent-free conditions, Tetrahedron Lett. 50 (2009) 1754-1756.
-
[10]
[10] A. Debache, L. Chouguiat, R. Boulcina, B. Carbonib, A one-pot multi-component synthesis of dihydropyrimidinone/thione and dihydropyridine derivatives via Biginelli and Hantzsch condensations using t-BuOK as a catalyst under solvent-free conditions, Open Org. Chem. J. 6 (2012) 12-20.
-
[11]
[11] L.M. Wang, J. Sheng, L. Zhang, et al., Facile Yb(OTf)3 promoted one-pot synthesis of polyhydroquinoline derivatives through Hantzsch reaction, Tetrahedron 61 (2005) 1539-1543.
-
[12]
[12] J.L. Donelson, R.A. Gibbs, S.K. De, An efficient one-pot synthesis of polyhydroquinoline derivatives through the Hantzsch four component condensation, J. Mol. Catal. A: Chem. 256 (2006) 309-311.
-
[13]
[13] S.M. Baghbanian, S. Khaksar, S.M. Vahdat, M. Farhang, M. Tajbakhsh, One-step, synthesis of Hantzsch esters and polyhydroquinoline derivatives using new organocatalyst, Chin. Chem. Lett. 21 (2010) 563-567.
-
[14]
[14] S. Abdolmohammadi, Simple route to indeno[1,2-b]quinoline derivatives via a coupling reaction catalyzed by TiO2 nanoparticles, Chin. Chem. Lett. 24 (2013) 318-320.
-
[15]
[15] L.S. Gadekar, S.S. Katkar, S.R. Mane, B.R. Arbad, M.K. Lande, Scolecite catalyzed facile and efficient synthesis of polyhydroquinoline derivatives through Hantzsch multi-component condensation, Bull. Korean Chem. Soc. 30 (2009) 2532-2534.
-
[16]
[16] M.M. Heravi, M. Zakeri, S. Pooremamy, H.A. Oskooie, Clean and efficient synthesis of polyhydroquinoline derivatives under solvent-free conditions catalyzed by morpholine, Synth. Commun. 1 (2011) 113-120.
-
[17]
[17] R. Pagadala, S. Maddila, V.D.B.C. Dasireddy, S.B. Jonnalagadda, Zn-VCO3 hydrotalcite: a highly efficient and reusable heterogeneous catalyst for the Hantzsch dihydropyridine reaction, Catal. Commun. 45 (2014) 148-152.
-
[18]
[18] M. Nasr-Esfahani, S.J. Hoseini, M. Montazerozohori, R. Mehrabi, H. Nasrabad, Magnetic Fe3O4 nanoparticles: efficient and recoverable nanocatalyst for the synthesis of polyhydroquinolines and Hantzsch 1,4-dihydropyridines under solvent-free conditions, J. Mol. Catal. A: Chem. 382 (2014) 99-105.
-
[19]
[19] E. Mosaddegh, A. Hassankhani, An efficient and rapid Mn(Ⅲ) complex catalyzed synthesis of polyhydropyridine derivatives via Hantzsch four component condensation, Arab. J. Chem. 5 (2012) 315-318.
-
[20]
[20] B.P. Bandgar, P.E. More, V.T. Kamble, J.V. Totre, Synthesis of polyhydroquinoline derivatives under aqueous media, Arkivoc xv (2008) 1-8.
-
[21]
[21] (a) N.K. Ladani, D.C. Mungra, M.P. Patel, R.G. Patel, Microwave assisted synthesis of novel Hantzsch 1,4-dihydropyridines, acridine-1,8-diones and polyhydroquinolines bearing the tetrazolo[1,5-a]quinoline moiety and their antimicrobial activity assess, Chin. Chem. Lett. 22 (2011) 1407-1410; (b) A. Kumar, R.A. Maurya, Efficient synthesis of Hantzsch esters and polyhydroquinoline derivatives in aqueous micelles, Synlett 6 (2008) 883-885.
-
[22]
[22] M. Tajbakhsh, H. Alinezhad, M. Norouzi, S. Baghery, M. Akbari, Protic pyridinium ionic liquid as a green and highly efficient catalyst for the synthesis of polyhydroquinoline derivatives via Hantzsch condensation in water, J. Mol. Liq. 177 (2013) 44-48.
-
[23]
[23] (a) V.P. Mehta, S.G. Modha, E. Ruijter, et al., A microwave-assisted diastereoselective multicomponent reaction to access dibenzo[c,e]azepinones: synthesis and biological evaluation, J. Org. Chem. 76 (2011) 2828-2839; (b) H. Alinezhad, M. Tajbakhsh, M. Zare, Catalyst-free one-pot synthesis of 1,4,5-trisubstituted pyrazoles in 2,2,2-trifluoroethanol, J. Fluor. Chem. 132 (2011) 995-1000.
-
[24]
[24] J.A. Kurzman, L.M. Misch, R. Seshadri, Chemistry of precious metal oxides relevant to heterogeneous catalysis, Dalton Trans. 42 (2013) 14653-14667.
-
[25]
[25] L. Wang, Y. Ma, Y. Wang, S. Liu, Y. Deng, Efficient synthesis of glycerol carbonate from glycerol and urea with lanthanum oxide as a solid base catalyst, Catal. Commun. 12 (2011) 1458-1462.
-
[26]
[26] S.N. Murthy, B. Madhav, V.P. Reddy, Y.V.D. Nageswar, A new, efficient and recyclable lanthanum(Ⅲ) oxide-catalyzed C-N cross-coupling, Adv. Synth. Catal. 352 (2010) 3241-3245.
-
[27]
[27] A. Cwik, Z. Hell, F. Figueras, Palladium/magnesium-lanthanum mixed oxide catalyst in the Heck reaction, Adv. Synth. Catal. 348 (2006) 523-530.
-
[28]
[28] M.L. Kantam, K.B. Shiva Kumar, V. Balasubramanyam, G.T. Venkanna, F. Figueras, One-pot Wittig reaction for the synthesis of α,β-unsaturated esters using highly basicmagnesium/lanthanummixed oxide, J.Mol. Catal.A: Chem.321(2010) 10-14.
-
[29]
[29] (a) S.U. Tekale, A.B. Tekale, N.S. Kanhe, S.V. Bhoraskar, R.P. Pawar, Nano-particulate aluminiumnitride/Al: an efficient and versatile heterogeneous catalyst for the synthesis of Biginelli scaffolds, Am. Inst. Phys. Conf. Proc. 1393 (2011) 275-276; (b) S.U. Tekale, S.S.Shisodia, S.S.Kauthale, et al.,MicronparticlesofAlN/Al: efficient, novel, and reusable heterogeneous catalyst for the synthesis of bis(indolyl)-methanes, Synth. Commun. 43 (2013) 1849-1858.
-
[30]
[30] R.W.G. Wyckoff, Crystal Structures: Inorganic Compounds RXn, RnMX2, RnMX3, Interscience Publishers, New York, 1963.
-
[1]
-
-
-
[1]
Zhiyuan TONG , Ziyuan LI , Ke ZHANG . Three-dimensional porous collector based on Cu-Li6.4La3Zr1.4Ta0.6O12 composite layer for the construction of stable lithium metal anode. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 499-508. doi: 10.11862/CJIC.20240238
-
[2]
Juan Guo , Mingyuan Fang , Qingsong Liu , Xiao Ren , Yongqiang Qiao , Mingju Chao , Erjun Liang , Qilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957
-
[3]
Renshu Huang , Jinli Chen , Xingfa Chen , Tianqi Yu , Huyi Yu , Kaien Li , Bin Li , Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171
-
[4]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[5]
Haojie Duan , Hejingying Niu , Lina Gan , Xiaodi Duan , Shuo Shi , Li Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038
-
[6]
Cailiang Yue , Nan Sun , Yixing Qiu , Linlin Zhu , Zhiling Du , Fuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698
-
[7]
Dong-Xue Jiao , Hui-Li Zhang , Chao He , Si-Yu Chen , Ke Wang , Xiao-Han Zhang , Li Wei , Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304
-
[8]
Fei ZHOU , Xiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236
-
[9]
Ran Yu , Chen Hu , Ruili Guo , Ruonan Liu , Lixing Xia , Cenyu Yang , Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032
-
[10]
Honglin Gao , Chunlin Yuan , Hongyu Chen , Aiyi Dong , Pan Gao , Guangjin Hou . Surface gallium hydride on Ga2O3 polymorphs: A comparative solid-state NMR study. Chinese Journal of Structural Chemistry, 2025, 44(4): 100561-100561. doi: 10.1016/j.cjsc.2025.100561
-
[11]
Shiyi WANG , Chaolong CHEN , Xiangjian KONG , Lansun ZHENG , Lasheng LONG . Polynuclear lanthanide compound [Ce4ⅢCe6Ⅳ(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342
-
[12]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[13]
Xiuzheng Deng , Changhai Liu , Xiaotong Yan , Jingshan Fan , Qian Liang , Zhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942
-
[14]
Yan ZHAO , Jiaxu WANG , Zhonghu LI , Changli LIU , Xingsheng ZHAO , Hengwei ZHOU , Xiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316
-
[15]
Ping Lu , Baoyin Du , Ke Liu , Ze Luo , Abiduweili Sikandaier , Lipeng Diao , Jin Sun , Luhua Jiang , Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361
-
[16]
Jijoe Samuel Prabagar , Kumbam Lingeshwar Reddy , Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564
-
[17]
Hongzhi Zhang , Hong Li , Asif Ali Haider , Junpeng Li , Zhi Xie , Hongming Jiang , Conglin Liu , Rui Wang , Jing Zhu . An unexpected role of lanthanide substitution in thermally responsive phosphors NaLnTe2O7: Eu3+ (Ln = Y and Gd). Chinese Journal of Structural Chemistry, 2025, 44(2): 100509-100509. doi: 10.1016/j.cjsc.2024.100509
-
[18]
Kunyao Peng , Xianbin Wang , Xingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274
-
[19]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
-
[20]
Guangchang Yang , Shenglong Yang , Jinlian Yu , Yishun Xie , Chunlei Tan , Feiyan Lai , Qianqian Jin , Hongqiang Wang , Xiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(706)
- HTML views(0)