Citation: Sunil U. Tekale, Vijay P. Pagore, Sushama S. Kauthale, Rajendra P. Pawar. La2O3/TFE:An efficient system for room temperature synthesis of Hantzsch polyhydroquinolines[J]. Chinese Chemical Letters, ;2014, 25(8): 1149-1152. doi: 10.1016/j.cclet.2014.03.037 shu

La2O3/TFE:An efficient system for room temperature synthesis of Hantzsch polyhydroquinolines

  • Corresponding author: Rajendra P. Pawar, 
  • Received Date: 12 November 2013
    Available Online: 12 March 2014

  • Lanthanum oxide (La2O3) in combination with 2,2,2-trifluoroethanol (TFE) was found to be an efficient system for the one-pot, four-component synthesis of Hantzsch polyhydroquinoline derivatives from aromatic aldehydes, dimedone, ethyl acetoacetate and ammonium acetate at ambient temperature. The catalyst is heterogeneous and reusable, hence can be separated easily and reused. The present method is featured by mild reaction conditions, use of heterogeneous catalyst, non-chromatographic purification, short reaction time and high yields, which make it an attractive route for the synthesis of polyhydroquinolines.
  • 加载中
    1. [1]

      [1] V.A. Orru, E. Ruijter, Synthesis of Heterocycles via Multicomponent Reactions, I, Springer, Berlin, Heidelberg, 2010.

    2. [2]

      [2] C. Hulme, V. Gore, Multi-component reactions: emerging chemistry in drug discovery from xylocain to crixivan, Curr. Med. Chem. 10 (2003) 51-80.

    3. [3]

      [3] Y. Nishiya, N. Kosaka, M. Uchii, S. Sugimoto, A potent 1,4-dihydropyridine L-type calcium channel blocker, benidipine, promotes osteoblast differentiation, Calcif. Tissue Int. 70 (2002) 30-39.

    4. [4]

      [4] (a) K. Sirisha, G. Achaiah, V.M. Reddy, Facile synthesis and antibacterial, antitubercular, and anticancer activities of novel 1,4-dihydropyridines, Arch. Pharm. 343 (2010) 342-352; (b) R. van der Lee, M. Pfaffendorf, P.A. van Zwieten, The differential time courses of the vasodilator effects of various 1,4-dihydropyridines in isolated human small arteries are correlated to their lipophilicity, J. Hypertens. 18 (2000) 1677-1682.

    5. [5]

      [5] S. Yasar,M. Corrada, R. Brookmeyer, C. Kawas, Calcium channel blockers and risk of AD: the Baltimore longitudinal study of aging, Neurobiol. Aging 26 (2005) 157-163.

    6. [6]

      [6] M. Maheswara, V. Siddaiah, G. Lakishmi, V. Damu, C.V. Rao, An efficient one-pot synthesis of polyhydroquinoline derivatives via Hantzsch condensation using a heterogeneous catalyst under solvent-free conditions, Arkivoc ii (2006) 201-206.

    7. [7]

      [7] F.M. Moghaddam, H. Saeidian, Z. Mirjafary, A. Sadeghi, Rapid and efficient one-pot synthesis of 1,4-dihydropyridine and polyhydroquinoline derivatives through the Hantzsch four component condensation by zinc oxide, J. Iran. Chem. Soc. 6 (2009) 317-324.

    8. [8]

      [8] J. Safaei-Ghomi, M.A. Ghasemzadeh, Nanocrystalline copper(Ⅱ) oxide-catalyzed one-pot four component synthesis of polyhydroquinoline derivatives under solvent-free conditions, J. Nanostruct. 1 (2012) 243-248.

    9. [9]

      [9] S.B. Sapkal, K.F. Shelke, B.B. Shingate, M.S. Shingare, Nickel nanoparticle-catalyzed facile and efficient one-pot synthesis of polyhydroquinoline derivatives via Hantzsch condensation under solvent-free conditions, Tetrahedron Lett. 50 (2009) 1754-1756.

    10. [10]

      [10] A. Debache, L. Chouguiat, R. Boulcina, B. Carbonib, A one-pot multi-component synthesis of dihydropyrimidinone/thione and dihydropyridine derivatives via Biginelli and Hantzsch condensations using t-BuOK as a catalyst under solvent-free conditions, Open Org. Chem. J. 6 (2012) 12-20.

    11. [11]

      [11] L.M. Wang, J. Sheng, L. Zhang, et al., Facile Yb(OTf)3 promoted one-pot synthesis of polyhydroquinoline derivatives through Hantzsch reaction, Tetrahedron 61 (2005) 1539-1543.

    12. [12]

      [12] J.L. Donelson, R.A. Gibbs, S.K. De, An efficient one-pot synthesis of polyhydroquinoline derivatives through the Hantzsch four component condensation, J. Mol. Catal. A: Chem. 256 (2006) 309-311.

    13. [13]

      [13] S.M. Baghbanian, S. Khaksar, S.M. Vahdat, M. Farhang, M. Tajbakhsh, One-step, synthesis of Hantzsch esters and polyhydroquinoline derivatives using new organocatalyst, Chin. Chem. Lett. 21 (2010) 563-567.

    14. [14]

      [14] S. Abdolmohammadi, Simple route to indeno[1,2-b]quinoline derivatives via a coupling reaction catalyzed by TiO2 nanoparticles, Chin. Chem. Lett. 24 (2013) 318-320.

    15. [15]

      [15] L.S. Gadekar, S.S. Katkar, S.R. Mane, B.R. Arbad, M.K. Lande, Scolecite catalyzed facile and efficient synthesis of polyhydroquinoline derivatives through Hantzsch multi-component condensation, Bull. Korean Chem. Soc. 30 (2009) 2532-2534.

    16. [16]

      [16] M.M. Heravi, M. Zakeri, S. Pooremamy, H.A. Oskooie, Clean and efficient synthesis of polyhydroquinoline derivatives under solvent-free conditions catalyzed by morpholine, Synth. Commun. 1 (2011) 113-120.

    17. [17]

      [17] R. Pagadala, S. Maddila, V.D.B.C. Dasireddy, S.B. Jonnalagadda, Zn-VCO3 hydrotalcite: a highly efficient and reusable heterogeneous catalyst for the Hantzsch dihydropyridine reaction, Catal. Commun. 45 (2014) 148-152.

    18. [18]

      [18] M. Nasr-Esfahani, S.J. Hoseini, M. Montazerozohori, R. Mehrabi, H. Nasrabad, Magnetic Fe3O4 nanoparticles: efficient and recoverable nanocatalyst for the synthesis of polyhydroquinolines and Hantzsch 1,4-dihydropyridines under solvent-free conditions, J. Mol. Catal. A: Chem. 382 (2014) 99-105.

    19. [19]

      [19] E. Mosaddegh, A. Hassankhani, An efficient and rapid Mn(Ⅲ) complex catalyzed synthesis of polyhydropyridine derivatives via Hantzsch four component condensation, Arab. J. Chem. 5 (2012) 315-318.

    20. [20]

      [20] B.P. Bandgar, P.E. More, V.T. Kamble, J.V. Totre, Synthesis of polyhydroquinoline derivatives under aqueous media, Arkivoc xv (2008) 1-8.

    21. [21]

      [21] (a) N.K. Ladani, D.C. Mungra, M.P. Patel, R.G. Patel, Microwave assisted synthesis of novel Hantzsch 1,4-dihydropyridines, acridine-1,8-diones and polyhydroquinolines bearing the tetrazolo[1,5-a]quinoline moiety and their antimicrobial activity assess, Chin. Chem. Lett. 22 (2011) 1407-1410; (b) A. Kumar, R.A. Maurya, Efficient synthesis of Hantzsch esters and polyhydroquinoline derivatives in aqueous micelles, Synlett 6 (2008) 883-885.

    22. [22]

      [22] M. Tajbakhsh, H. Alinezhad, M. Norouzi, S. Baghery, M. Akbari, Protic pyridinium ionic liquid as a green and highly efficient catalyst for the synthesis of polyhydroquinoline derivatives via Hantzsch condensation in water, J. Mol. Liq. 177 (2013) 44-48.

    23. [23]

      [23] (a) V.P. Mehta, S.G. Modha, E. Ruijter, et al., A microwave-assisted diastereoselective multicomponent reaction to access dibenzo[c,e]azepinones: synthesis and biological evaluation, J. Org. Chem. 76 (2011) 2828-2839; (b) H. Alinezhad, M. Tajbakhsh, M. Zare, Catalyst-free one-pot synthesis of 1,4,5-trisubstituted pyrazoles in 2,2,2-trifluoroethanol, J. Fluor. Chem. 132 (2011) 995-1000.

    24. [24]

      [24] J.A. Kurzman, L.M. Misch, R. Seshadri, Chemistry of precious metal oxides relevant to heterogeneous catalysis, Dalton Trans. 42 (2013) 14653-14667.

    25. [25]

      [25] L. Wang, Y. Ma, Y. Wang, S. Liu, Y. Deng, Efficient synthesis of glycerol carbonate from glycerol and urea with lanthanum oxide as a solid base catalyst, Catal. Commun. 12 (2011) 1458-1462.

    26. [26]

      [26] S.N. Murthy, B. Madhav, V.P. Reddy, Y.V.D. Nageswar, A new, efficient and recyclable lanthanum(Ⅲ) oxide-catalyzed C-N cross-coupling, Adv. Synth. Catal. 352 (2010) 3241-3245.

    27. [27]

      [27] A. Cwik, Z. Hell, F. Figueras, Palladium/magnesium-lanthanum mixed oxide catalyst in the Heck reaction, Adv. Synth. Catal. 348 (2006) 523-530.

    28. [28]

      [28] M.L. Kantam, K.B. Shiva Kumar, V. Balasubramanyam, G.T. Venkanna, F. Figueras, One-pot Wittig reaction for the synthesis of α,β-unsaturated esters using highly basicmagnesium/lanthanummixed oxide, J.Mol. Catal.A: Chem.321(2010) 10-14.

    29. [29]

      [29] (a) S.U. Tekale, A.B. Tekale, N.S. Kanhe, S.V. Bhoraskar, R.P. Pawar, Nano-particulate aluminiumnitride/Al: an efficient and versatile heterogeneous catalyst for the synthesis of Biginelli scaffolds, Am. Inst. Phys. Conf. Proc. 1393 (2011) 275-276; (b) S.U. Tekale, S.S.Shisodia, S.S.Kauthale, et al.,MicronparticlesofAlN/Al: efficient, novel, and reusable heterogeneous catalyst for the synthesis of bis(indolyl)-methanes, Synth. Commun. 43 (2013) 1849-1858.

    30. [30]

      [30] R.W.G. Wyckoff, Crystal Structures: Inorganic Compounds RXn, RnMX2, RnMX3, Interscience Publishers, New York, 1963.

  • 加载中
    1. [1]

      Zhiyuan TONGZiyuan LIKe ZHANG . Three-dimensional porous collector based on Cu-Li6.4La3Zr1.4Ta0.6O12 composite layer for the construction of stable lithium metal anode. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 499-508. doi: 10.11862/CJIC.20240238

    2. [2]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    3. [3]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    4. [4]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    5. [5]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    6. [6]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    7. [7]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    8. [8]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    9. [9]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    10. [10]

      Honglin Gao Chunlin Yuan Hongyu Chen Aiyi Dong Pan Gao Guangjin Hou . Surface gallium hydride on Ga2O3 polymorphs: A comparative solid-state NMR study. Chinese Journal of Structural Chemistry, 2025, 44(4): 100561-100561. doi: 10.1016/j.cjsc.2025.100561

    11. [11]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    12. [12]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    13. [13]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    14. [14]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    15. [15]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    16. [16]

      Jijoe Samuel Prabagar Kumbam Lingeshwar Reddy Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564

    17. [17]

      Hongzhi Zhang Hong Li Asif Ali Haider Junpeng Li Zhi Xie Hongming Jiang Conglin Liu Rui Wang Jing Zhu . An unexpected role of lanthanide substitution in thermally responsive phosphors NaLnTe2O7: Eu3+ (Ln = Y and Gd). Chinese Journal of Structural Chemistry, 2025, 44(2): 100509-100509. doi: 10.1016/j.cjsc.2024.100509

    18. [18]

      Kunyao PengXianbin WangXingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274

    19. [19]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    20. [20]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

Metrics
  • PDF Downloads(0)
  • Abstract views(706)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return