Citation: Xing-Li Liu, Chun Wang, Qiu-Hua Wu, Zhi Wang. Preconcentration of chlorophenols in water samples using threedimensional graphene-based magnetic nanocomposite as absorbent[J]. Chinese Chemical Letters, ;2014, 25(8): 1185-1189. doi: 10.1016/j.cclet.2014.03.030 shu

Preconcentration of chlorophenols in water samples using threedimensional graphene-based magnetic nanocomposite as absorbent

  • Corresponding author: Qiu-Hua Wu, 
  • Received Date: 10 December 2013
    Available Online: 28 February 2014

    Fund Project: Financial supports from the National Natural Science Foundation of China (No. 31171698) (No. 31171698)the Natural Science Foundations of Hebei (No. B2012204028) are gratefully acknowledged. (No. ZD20131033)

  • In this paper, a novelmagnetic solid-phase extraction method using three-dimensional graphene-based magnetic nanocomposite as adsorbent for the preconcentration of several chlorophenols from water samples prior to high-performance liquid chromatography analysis was developed. Various experimental parameters were investigated. Under the optimum conditions, the enrichment factors of the method were in the range of 186-312, and the limit of detection (S/N=3) was 0.10 ng/mL. The recoveries of the method were in the range between 85.1% and 101.2%. The developed method has been successfully applied to the determination of chlorophenols in environmental water samples.
  • 加载中
    1. [1]

      [1] Y. Liu, H. Li, J.M. Lin, Magnetic solid-phase extraction based on octadecyl functionalization of monodisperse magnetic ferrite microspheres for the determination of polycyclic aromatic hydrocarbons in aqueous samples coupled with gas chromatography-mass spectrometry, Talanta 77 (2009) 1037-1042.

    2. [2]

      [2] Z. Liu, B.D. Cai, Y.Q. Feng, Rapid determination of endogenous cytokinins in plant samples by combination of magnetic solid phase extraction with hydrophilic interaction chromatography-tandem mass spectrometry, J. Chromatogr. B 891 (2012) 27-35.

    3. [3]

      [3] Q. Zhou, Z.Q. Li, C.D. Shuang, et al., Preparation of acid-resistant magnetic adsorbent for effective removal of p-nitrophenol, Chin. Chem. Lett. 23 (2012) 1079-1082.

    4. [4]

      [4] A. Spietelun, L. Marcinkowski, M. de la Guardia, J. Namiesnik, Recent developments and future trends in solid phase microextraction techniques towards green analytical chemistry, J. Chromatogr. A 1321 (2013) 1-13.

    5. [5]

      [5] G. Giakisikli, A.N. Anthemidis, Magnetic materials as sorbents for metal/metalloid preconcentration and/or separation. A review, Anal. Chim. Acta 789 (2013) 1-16.

    6. [6]

      [6] K.S. Novoselov, A.K. Geim, S. Morozov, et al., Electric field effect in atomically thin carbon films, Science 306 (2004) 666-669.

    7. [7]

      [7] J. Chen, J. Zou, J. Zeng, et al., Preparation and evaluation of graphene-coated solidphase microextraction fiber, Anal. Chim. Acta 678 (2010) 44-49.

    8. [8]

      [8] P. Lü, Y. Feng, X. Zhang, Y. Li, W. Feng, Recent progresses in application of functionalized graphene sheets, Sci. China Technol. Sci. 53 (2010) 2311-2319.

    9. [9]

      [9] Y.Q. He, N.N. Zhang, X.D. Wang, Adsorption of graphene oxide/chitosan porous materials for metal ions, Chin. Chem. Lett. 22 (2011) 859-862.

    10. [10]

      [10] X. Huang, Z. Yin, S. Wu, et al., Graphene-based materials: synthesis, characterization, properties, and applications, Small 7 (2011) 1876-1902.

    11. [11]

      [11] H.P. Cong, X.C. Ren, P. Wang, S.H. Yu, Macroscopic multifunctional graphenebased hydrogels and aerogels by a metal ion induced self-assembly process, ACS Nano 6 (2012) 2693-2703.

    12. [12]

      [12] C. Li, G. Shi, Three-dimensional graphene architectures, Nanoscale 4 (2012) 5549-5563.

    13. [13]

      [13] M. Czaplicka, Sources and transformations of chlorophenols in the natural environment, Sci. Total Environ. 322 (2004) 21-39.

    14. [14]

      [14] J. Michałowicz, W. Duda, Phenols-sources and toxicity, Pol. J. Environ. Stud. 16 (2007) 347-362.

    15. [15]

      [15] T. Saitoh, T. Kondo, M. Hiraide, Concentration of chlorophenols in water to dialkyated catinonic surfactant-silica gel admicelles, J. Chromatogr. A 1164 (2007) 40-47.

    16. [16]

      [16] S. Holopainen, V. Luukkonen, M. Nousiainen, M. Sillanpää, Determination of chlorophenols in water by headspace solid phase microextraction ion mobility spectrometry (HS-SPME-IMS), Talanta 114 (2013) 176-182.

    17. [17]

      [17] L.W. Chung, M.R. Lee, Evaluation of liquid-phase microextraction conditions for determination of chlorophenols in environmental samples using gas chromatography-mass spectrometry without derivatization, Talanta 76 (2008) 154-160.

    18. [18]

      [18] C.Y. Lin, S.D. Huang, Application of liquid-liquid-liquid microextraction and ionpair liquid chromatography coupled with photodiode array detection for the determination of chlorophenols in water, J. Chromatogr. A 1193 (2008) 79-84.

    19. [19]

      [19] W. Wang, Y. Li, Q. Wu, et al., Extraction of neonicotinoid insecticides from environmental water samples with magnetic graphene nanoparticles as adsorbent followed by determination with HPLC, Anal. Methods 4 (2012) 766-772.

  • 加载中
    1. [1]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    2. [2]

      Shiyu HouMaolin SunLiming CaoChaoming LiangJiaxin YangXinggui ZhouJinxing YeRuihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761

    3. [3]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    4. [4]

      Feng-Qing HuangYu WangJi-Wen WangDai YangShi-Lei WangYuan-Ming FanRaphael N. AlolgaLian-Wen Qi . Chemical isotope labeling-assisted liquid chromatography-mass spectrometry enables sensitive and accurate determination of dipeptides and tripeptides in complex biological samples. Chinese Chemical Letters, 2024, 35(11): 109670-. doi: 10.1016/j.cclet.2024.109670

    5. [5]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    6. [6]

      Siming Bian Sijie Luo Junjie Ou . Application of van Deemter Equation in Instrumental Analysis Teaching: A New Type of Core-Shell Stationary Phase. University Chemistry, 2025, 40(3): 381-386. doi: 10.12461/PKU.DXHX202406087

    7. [7]

      Yuhang Li Yang Ling Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237

    8. [8]

      Chao Ma Peng Guo Zhongmin Liu . DNL-16: A new zeolitic layered silicate unraveled by three-dimensional electron diffraction. Chinese Journal of Structural Chemistry, 2024, 43(4): 100235-100235. doi: 10.1016/j.cjsc.2024.100235

    9. [9]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    10. [10]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    11. [11]

      Hui GuMingyue GaoKuan ShenTianli ZhangJunhao ZhangXiangjun ZhengXingmei GuoYuanjun LiuFu CaoHongxing GuQinghong KongShenglin Xiong . F127 assisted fabrication of Ge/rGO/CNTs nanocomposites with three-dimensional network structure for efficient lithium storage. Chinese Chemical Letters, 2024, 35(9): 109273-. doi: 10.1016/j.cclet.2023.109273

    12. [12]

      Jie ZhouChuanxiang ZhangChangchun HuShuo LiYuan LiuZhu ChenSong LiHui ChenRokayya SamiYan Deng . Electrochemical aptasensor based on black phosphorus-porous graphene nanocomposites for high-performance detection of Hg2+. Chinese Chemical Letters, 2024, 35(11): 109561-. doi: 10.1016/j.cclet.2024.109561

    13. [13]

      Wenhao FengChunli LiuZheng LiuHuan PangIn-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552

    14. [14]

      Zhao-Bo HuLing-Ao GuiLong-He LiTong-Tong XiaoAdam T. HandPagnareach TinMykhaylo OzerovYan PengZhongwen OuyangZhenxing WangZi-Ling XueYou Song . Co single-ion magnet and its multi-dimensional aggregations: Influence of the structural rigidity on magnetic relaxation process. Chinese Chemical Letters, 2025, 36(2): 109600-. doi: 10.1016/j.cclet.2024.109600

    15. [15]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

    16. [16]

      Rui Liu Jinbo Pang Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329

    17. [17]

      Ning ZhangMengjie QinJiawen ZhuXuejing LouXiao TianWende MaYoumei WangMinghua LuZongwei Cai . Thickness-controllable synthesis of metal-organic framework based hollow nanoflowers with magnetic core via liquid phase epitaxy for phosphopeptides enrichment. Chinese Chemical Letters, 2025, 36(4): 110177-. doi: 10.1016/j.cclet.2024.110177

    18. [18]

      Mengyuan LiXitong RenYanmei GaoMengyao MuShiping ZhuShufang TianMinghua Lu . Constructing bifunctional magnetic porous poly(divinylbenzene) polymer for high-efficient removal and sensitive detection of bisphenols. Chinese Chemical Letters, 2024, 35(12): 109699-. doi: 10.1016/j.cclet.2024.109699

    19. [19]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    20. [20]

      Wangyan HuKe LiXiangnan DouNing LiXiayan Wang . Nano-sized stationary phase packings retained by single-particle frit for microchip liquid chromatography. Chinese Chemical Letters, 2024, 35(4): 108806-. doi: 10.1016/j.cclet.2023.108806

Metrics
  • PDF Downloads(0)
  • Abstract views(673)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return