Citation: Lu-Xin Zhang, Han Yu, Hong-Bing Yu, Ze Chen, Lei Yang. Conversion of xylose and xylan into furfural in biorenewable choline chloride-oxalic acid deep eutectic solvent with the addition of metal chloride[J]. Chinese Chemical Letters, ;2014, 25(8): 1132-1136. doi: 10.1016/j.cclet.2014.03.029 shu

Conversion of xylose and xylan into furfural in biorenewable choline chloride-oxalic acid deep eutectic solvent with the addition of metal chloride

  • Corresponding author: Hong-Bing Yu,  Lei Yang, 
  • Received Date: 22 November 2013
    Available Online: 26 February 2014

    Fund Project:

  • An environmentally benign processing approach for furfural production from xylose and xylan under verymild conditions (353-373 K) was developed with the addition of metal chlorides in ChCl-oxalic acid (a deep eutectic solvent (DES)) synthesized from cheap and renewable starting materials). ChCl-oxalic acid acted as both a Brønsted acid catalyst and a reaction medium in this catalytic route. In addition, a biphasic system with methyl isobutyl ketone as an extracting reagent (DES/MIBK) to further increase furfural yield was also proposed. This processing approach for producing furfural eliminated the large energy consumption for high pressure saturated steam and the generation of acidic effluent, which was very difficult to handle. The whole catalytic system was more environmentally friendly compared with the commercial process for furfural production.
  • 加载中
    1. [1]

      [1] F. Geilen, B. Engendahl, A. Harwardt, et al., Selective and flexible transformation of biomass-derived platform chemicals by a multifunctional catalytic system, Angew. Chem. 122 (2010) 5642-5646.

    2. [2]

      [2] A.S. Mamman, J.M. Lee, Y.C. Kim, et al., Furfural: hemicellulose/xylosederived biochemical, Biofuels Bioprod. Biorefin. 2 (2008) 438-454.

    3. [3]

      [3] S. Dutta, S. De, B. Saha, M.I. Alam, Advances in conversion of hemicellulosic biomass to furfural and upgrading to biofuels, Catal. Sci. Technol. 2 (2012) 2025-2036.

    4. [4]

      [4] P.L. Dhepe, R. Sahu, A solid-acid-based process for the conversion of hemicellulose, Green Chem. 12 (2010) 2153-2156.

    5. [5]

      [5] R. Rinaldi, F. Schüth, Design of solid catalysts for the conversion of biomass, Energy Environ. Sci. 2 (2009) 610-626.

    6. [6]

      [6] E.I. Gürbüz, J.M.R. Gallo, D.M. Alonso, et al., Conversion of hemicellulose into furfural using solid acid catalysts in γ-valerolactone, Angew. Chem. Int. Ed. 52 (2013) 1270-1274.

    7. [7]

      [7] C. Sievers, I. Musin, T. Marzialetti, et al., Acid-catalyzed conversion of sugars and furfurals in an ionic-liquid phase, ChemSusChem 2 (2009) 665-671.

    8. [8]

      [8] I. Agirrezabal-Telleria, J. Requies, M.B. Güemez, P.L. Arias, Furfural production from xylose + glucose feedings and simultaneous N2-stripping, Green Chem. 14 (2012) 3132-3140.

    9. [9]

      [9] E.I. Gürbüz, S.G. Wettstein, J.A. Dumesic, Conversion of hemicellulose to furfural and levulinic acid using biphasic reactors with alkylphenol solvents, Chem-SusChem 5 (2012) 383-387.

    10. [10]

      [10] Y. Yang, C.W. Hu, M.M. Abu-Omar, Synthesis of furfural from xylose, xylan, and biomass using AlCl3·6H2O in biphasic media via xylose isomerization to xylulose, ChemSusChem 5 (2012) 405-410.

    11. [11]

      [11] R. Xing, W. Qi, G.W. Huber, Production of furfural and carboxylic acids from waste aqueous hemicellulose solutions from the pulp and paper and cellulosic ethanol industries, Energy Environ. Sci. 4 (2011) 2193-2205.

    12. [12]

      [12] L.X. Zhang, H.B. Yu, P. Wang, H. Dong, X.H. Peng, Conversion of xylan, D-xylose and lignocellulosic biomass into furfural using AlCl3 as catalyst in ionic liquid, Bioresour. Technol. 130 (2013) 110-116.

    13. [13]

      [13] L.X. Zhang, H.B. Yu, P. Wang, Solid acids as catalysts for the conversion of D-xylose, xylan and lignocellulosics into furfural in ionic liquid, Bioresour. Technol. 136 (2013) 515-521.

    14. [14]

      [14] D.Z. Yang, M.Q. Hou, H. Ning, et al., Efficient SO2 absorption by renewable choline chloride-glycerol deep eutectic solvents, Green Chem. 15 (2013) 2261-2265.

    15. [15]

      [15] E. Durand, J. Lecomte, B. Baréa, et al., Evaluation of deep eutectic solvent-water binary mixtures for lipase-catalyzed lipophilization of phenolic acids, Green Chem. 15 (2013) 2275-2282.

    16. [16]

      [16] S. Handy, K. Lavender, Organic synthesis in deep eutectic solvents: Paal-Knorr reactions, Tetrahedron Lett. 54 (2013) 4377-4379.

    17. [17]

      [17] V. Choudhary, S. Sandler, D. Vlachos, Conversion of xylose to furfural using lewis and Brønsted acid catalysts in aqueous media, ACS Catal. 2 (2012) 2022-2028.

    18. [18]

      [18] L.Y. Mao, L. Zhang, N.B. Gao, A.M. Li, FeCl3 and acetic acid co-catalyzed hydrolysis of corncob for improving furfural production and lignin removal from residue, Bioresour. Technol. 123 (2012) 324-331.

    19. [19]

      [19] Y. Yang, C.W. Hu, M.M. Abu-Omar, Conversion of carbohydrates and lignocellulosic biomass into 5-hydroxymethylfurfural using AlCl3 ·6H2O catalyst in a biphasic solvent system, Green Chem. 14 (2012) 509-513.

    20. [20]

      [20] G. Marcotullio, W. de Jong, Chloride ions enhance furfural formation from Dxylose in dilute aqueous acidic solutions, Green Chem. 12 (2010) 1739-1746.

    21. [21]

      [21] L. Mao, L. Zhang, N. Gao, et al., Seawater-based furfural production via corncob hydrolysis catalyzed by FeCl3 in acetic acid steam, Green Chem. 15 (2013) 727-737.

    22. [22]

      [22] J. Gravitis, N. Vedernikov, J. Zandersons, A. Kokorevics, Furfural and levoglucosan production from deciduous wood and agricultural wastes, ACS Symp. Ser. 784 (2001) 110-122.

    23. [23]

      [23] A.P. Abbott, D. Boothby, G. Capper, et al., Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids, J. Am. Chem. Soc. 126 (2004) 9142-9147.

    24. [24]

      [24] S. Hu, Z. Zhang, Y. Zhou, et al., Direct conversion of inulin to 5-hydroxymethylfurfural in biorenewable ionic liquids, Green Chem. 11 (2009) 873-877.

    25. [25]

      [25] G. Marcotullio, W. de Jong, Furfural formation from D-xylose: the use of different halides in dilute aqueous acidic solutions allows for exceptionally high yields, Carbohydr. Res. 346 (2011) 1291-1293.

    26. [26]

      [26] J.B. Binder, J.J. Blank, A.V. Cefali, R.T. Raines, Synthesis of furfural from xylose and xylan, ChemSusChem 3 (2010) 1268-1272.

    27. [27]

      [27] T. vom Stein, P.M. Grande, W. Leitner, P.D. de María, Iron-catalyzed furfural production in biobased biphasic systems: from pure sugars to direct use of crude xylose effluents as feedstock, ChemSusChem 4 (2011) 1592-1594.

    28. [28]

      [28] A. Takagaki, M. Ohara, S. Nishimura, et al., One-pot formation of furfural from xylose via isomerization and successive dehydration reactions over heterogeneous acid and base catalysts, Chem. Lett. 39 (2010) 838-840.

    29. [29]

      [29] J.P. Lange, E. van der Heide, J. van Buijtenen, et al., Furfural-a promising platform for lignocellulosic biofuels, ChemSusChem 5 (2012) 150-166.

    30. [30]

      [30] R. Weingarten, J. Cho, J.W.C. Conner, G.W. Huber, Kinetics of furfural production by dehydration of xylose in a biphasic reactor with microwave heating, Green Chem. 12 (2010) 1423-1429.

    31. [31]

      [31] O. Yemiş, G. Mazza, Acid-catalyzed conversion of xylose, xylan and straw into furfural by microwave-assisted reaction, Bioresour. Technol. 102 (2011) 7371-7378.

    32. [32]

      [32] R. O'Neill, M.N. Ahmad, L. Vanoye, F. Aiouache, Kinetics of aqueous phase dehydration of xylose into furfural catalyzed by ZSM-5 zeolite, Ind. Eng. Chem. Res. 48 (2009) 4300-4306.

    33. [33]

      [33] J.H. Zhang, J.P. Zhuang, L. Lin, S.J. Lin, Z. Zhang, Conversion of D-xylose into furfural with mesoporous molecular sieve MCM-41 as catalyst and butanol as the extraction phase, Biomass Bioenergy 39 (2012) 73-77.

  • 加载中

Metrics
  • PDF Downloads(0)
  • Abstract views(744)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return