Citation:
Shao-Hua Liu, Wei Peng, Yan-Yan Qu, Dan Xu, Hong-Yue Li, Dun-Lun Song, Hong-Xia Duan, Xin-Ling Yang. Synthesis, insecticidal activity and molecular docking study of clothianidin analogues with hydrazide group[J]. Chinese Chemical Letters,
;2014, 25(7): 1017-1020.
doi:
10.1016/j.cclet.2014.03.026
-
A series of novel neonicotinoid analogues were designed and synthesized by introducing a hydrazide group into clothianidin. Their structures were confirmed by IR, 1H NMR, and HRMS (ESI). Preliminary bioassay showed that some compounds, 5b and 5g, exhibited good activity against soybean aphids (Aphis glycines) at 100 mg L 1. In addition, molecular docking with receptor was carried out to explain their different activity from clothianidin.
-
-
-
[1]
[1] J.E.C. Jepson, L.A. Brown, D.B. Sattelle, The actions of the neonicotinoid imidacloprid on cholinergic neurons of Drosophila melanogaster, Invert. Neurosci. 6 (2006) 33-40.
-
[2]
[2] S. Kagabu, R. Ishihara, Y. Hieda, K. Nishimura, Y. Naruse, Insecticidal and neuroblocking potencies of variants of the imidazolidine moiety of imidacloprid-related neonicotinoids and the relationship topartition coefficient and charge density on the pharmacophore, J. Agric. Food Chem. 55 (2007) 812-818.
-
[3]
[3] K. Kiriyama, K. Nishimura, Structural effects of dinotefuran and analogues in insecticidal and neural activities, Pest Manage. Sci. 58 (2002) 669-676.
-
[4]
[4] M. Tomizawa, D.L. Lee, J.E. Casida, Neonicotinoid insecticides: molecular features conferring selectivity for insect versus mammalian nicotinic receptors, J. Agric. Food Chem. 48 (2000) 6016-6024.
-
[5]
[5] S.J. Lee, M. Tomizawa, J.E. Casida, Nereistoxin and cartap neurotoxicity attributable to direct block of the insect nicotinic receptor/channel, J. Agric. Food Chem. 51 (2003) 2646-2652.
-
[6]
[6] M. Tomizawa, J.E. Casida, Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors, Annu. Rev. Entomol. 48 (2003) 339-364.
-
[7]
[7] A. Elbert, M. Schindler, R. Nauen, P. Jeschke, Overview of the status and global strategy for neonicotinoids, J. Agric. Food Chem. 59 (2011) 2897-2908.
-
[8]
[8] S. Kagabu, Discovery of imidacloprid and further developments from strategic molecular designs, J. Agric. Food Chem. 59 (2011) 2887-2896.
-
[9]
[9] M. Tomizawa, J.E. Casida, Molecular recognition of neonicotinoid insecticides: the determinants of life or death, Acc. Chem. Res. 42 (2009) 260-269.
-
[10]
[10] A. Elbert, R. Nauen, Resistance of bemisia tabaci (Homoptera: Aleyrodidae) to insecticides in southern Spain with special referenceto neonicotinoids, Pest Manage. Sci. 56 (2000) 60-64.
-
[11]
[11] K.D. Ninsin, Acetamiprid resistance and cross-resistance in the diamondback moth, plutella xylostella, Pest Manage. Sci. 60 (2004) 839-841.
-
[12]
[12] D.M. Sanchez, R.M. Hollingworth, E.J. Grafius, D.D. Moyer, Resistance and crossresistance to neonicotinoid insecticides and spinosad in the Colorado potato beetle, leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae), Pest Manage. Sci. 62 (2006) 30-37.
-
[13]
[13] K.G. Gorman, G. Devine, J. Bennison, et al., Report of resistance to the neonicotinoid insecticide imidacloprid in trialeurodes vaporariorum (Hemiptera: Aleyrodidae), Pest Manage. Sci. 63 (2007) 555-558.
-
[14]
[14] G. Arnold, J. Pistorius, T. Steeger, H. Thompson, Statement on the findings in recent studies investigating sub-lethal effects in bees of some neonicotinoids in consideration of the uses currently authorised in Europe, EFSA J. 10 (2012) 2752-2779.
-
[15]
[15] Z. Ye, S. Xia, X. Shao, et al., Design, synthesis, crystal structure analysis, and insecticidal evaluation of phenylazoneonicotinoids, J. Agric. Food Chem. 59 (2011) 10615-10623.
-
[16]
[16] W. Zhang, X. Yang, W. Chen, et al., Design, multicomponent synthesis, and bioactivities of novel neonicotinoid analogues with 1,4-dihydropyridine scaffold, J. Agric. Food Chem. 58 (2010) 2741-2745.
-
[17]
[17] N.Y. Chen, L.P. Ren, M.M. Zou, et al., Design, synthesis and insecticidal activity of spiro heterocycle containing neonicotinoid analogs, Chin. Chem. Lett. 25 (2014) 197-200.
-
[18]
[18] C. Sun, J. Zhu, H. Wang, et al., Chiral 1,5-disubstituted 1,3,5-hexahydrotriazine-2-N-nitroimine analogues as novel potent neonicotinoids: synthesis, insecticidal evaluation and molecular docking studies, Eur. J. Med. Chem. 46 (2011) 11-20.
-
[19]
[19] Y. Nakagawa, K. Takahashi, H. Kishikawa, et al., Classical and three-dimensional QSAR for the inhibition of [3H] ponasterone A binding by diacylhydrazine-type ecdysone agonists to insect Sf-9 cells, Bioorg. Med. Chem. 13 (2005) 1333-1340.
-
[20]
[20] C. Minakuchi, Mode of action of nonsteroidal ecdysone agonists, diacylhydrazine analogs, J. Pestic. Sci. 30 (2005) 228-238.
-
[21]
[21] X. Liu, L. Zhang, J.G. Tan, H.H. Xu, Design and synthesis of N-alkyl-N'-substituted 2,4-dioxo-3,4-dihydropyrimidin-1-diacylhydrazine derivatives as ecdysone receptor agonist, Bioorg. Med. Chem. 21 (2013) 4687-4697.
-
[22]
[22] Z. Huang, Y. Liu, Y. Li, et al., Synthesis, crystal structures, insecticidal activities, and structure-activity relationships of novel N'-tert-Butyl-N'-substituted-benzoyl-N-[di(octa) hydro] benzofuran{(2,3-dihydro) benzo[1,3] ([1,4]) dioxine} carbohydrazide derivatives, J. Agric. Food Chem. 59 (2011) 635-644.
-
[23]
[23] W.S. Abbott, A method of computing the effectiveness of an insecticide, J. Econ. Entomol. 18 (1995) 265-267.
-
[24]
[24] T.T. Talley, M. Harel, R.E. Hibbs, et al., Atomic interactions of neonicotinoid agonists with AChBP: molecular recognition of the distinctive electronegative pharmacophore, Proc. Natl. Acad. Sci. U. S. A. 105 (2008) 7606-7611.
-
[25]
[25] H.X. Duan, W.W. Zhang, J. Zhao, et al., A novel halogen bond and a better-known hydrogen bond cooperation of neonicotinoid and insect nicotinic acetylcholine receptor recognition, J. Mol. Model. 18 (2012) 3867-3875.
-
[26]
[26] L. Sun, Y. Ling, C. Wang, et al., Synthesis and biological activities of E-β-Farnesene analogues containing substituent nitroguanidine, Chin. J. Org. Chem. 31 (2011) 2061-2066.
-
[27]
[27] J.D. Schmitt, C.G.V. Sharples, W.S. Caldwell, Molecular recognition in nicotinic acetylcholine receptors: the importance of π-cation interactions, J. Med. Chem. 42 (1999) 3066-3074.
-
[1]
-
-
-
[1]
Zhi Zhou , Yu-E Lian , Yuqing Li , Hui Gao , Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104
-
[2]
Fuyun Chi , Man Zhang , Yiman Han , Fukui Shen , Shijie Peng , Bo Su , Yuanyuan Hou , Gang Bai . Covalent modulation of mPGES1 activity via α,β-unsaturated aldehyde group: Implications for downregulating PGE2 expression and antipyretic response. Chinese Chemical Letters, 2025, 36(4): 109913-. doi: 10.1016/j.cclet.2024.109913
-
[3]
Yanye Fan , Jingjing Chen , Bichun Chen , Jinyu Bai , Bowen Yang , Feng Liang , Lijing Fang . Design, synthesis and biological evaluation of Leu10-teixobactin analogues. Chinese Chemical Letters, 2025, 36(4): 110075-. doi: 10.1016/j.cclet.2024.110075
-
[4]
Xin Chen , Meng Zhao , Yan-Yuan Jia . Stable Eu(III)-based metal-organic framework for fluorescence sensing of benzaldehyde and its analogues. Chinese Journal of Structural Chemistry, 2025, 44(3): 100445-100445. doi: 10.1016/j.cjsc.2024.100445
-
[5]
Mei Peng , Wei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899
-
[6]
Fang-Yuan Chen , Wen-Chao Geng , Kang Cai , Dong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161
-
[7]
Mengfan Zhang , Lingyan Liu , Peng Wei , Wei Feng , Tao Yi . A proximity tagging strategy utilizing an activated aldehyde group as the active site. Chinese Chemical Letters, 2025, 36(4): 110127-. doi: 10.1016/j.cclet.2024.110127
-
[8]
Caihong Mao , Yanfeng He , Xiaohan Wang , Yan Cai , Xiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362
-
[9]
Cheng-Da Zhao , Huan Yao , Shi-Yao Li , Fangfang Du , Li-Li Wang , Liu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879
-
[10]
Yanwei Duan , Qing Yang . Molecular targets and their application examples for interrupting chitin biosynthesis. Chinese Chemical Letters, 2025, 36(4): 109905-. doi: 10.1016/j.cclet.2024.109905
-
[11]
Guangyao Wang , Zhitong Xu , Ye Qi , Yueguang Fang , Guiling Ning , Junwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503
-
[12]
Yuqing Wang , Zhemin Li , Qingjun Lu , Qizhao Li , Jiaxin Luo , Chengjie Li , Yongshu Xie . Solar cells based on doubly concerted companion dyes with the efficiencies modulated by inserting an ethynyl group at different positions. Chinese Chemical Letters, 2024, 35(5): 109093-. doi: 10.1016/j.cclet.2023.109093
-
[13]
Run-Han Li , Tian-Yi Dang , Wei Guan , Jiang Liu , Ya-Qian Lan , Zhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805
-
[14]
Junchen Peng , Xue Yin , Dandan Dong , Zhongyuan Guo , Qinqin Wang , Minmin Liu , Fei He , Bin Dai , Chaofeng Huang . Promotion effect of epoxy group neighboring single-atom Cu site on acetylene hydrochlorination. Chinese Chemical Letters, 2024, 35(6): 109508-. doi: 10.1016/j.cclet.2024.109508
-
[15]
Yu-Yu Tan , Lin-Heng He , Wei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986
-
[16]
Wenyu Gao , Liming Zhang , Chuang Zhao , Lixiang Liu , Xingran Yang , Jinbo Zhao . Controlled semi-Pinacol rearrangement on a strained ring: Efficient access to multi-substituted cyclopropanes by group migration strategy. Chinese Chemical Letters, 2024, 35(9): 109447-. doi: 10.1016/j.cclet.2023.109447
-
[17]
Chao LIU , Jiang WU , Zhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153
-
[18]
Zhimin Sun , Xin-Hui Guo , Yue Zhao , Qing-Yu Meng , Li-Juan Xing , He-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162
-
[19]
Li Lin , Song-Lin Tian , Zhen-Yu Hu , Yu Zhang , Li-Min Chang , Jia-Jun Wang , Wan-Qiang Liu , Qing-Shuang Wang , Fang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802
-
[20]
Minghao Hu , Tianci Xie , Yuqiang Hu , Longjie Li , Ting Wang , Tongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(641)
- HTML views(18)