Citation:
Ke Wang, Yan Li, Li-Jing Zhang, Xiao-Guang Chen, Zhi-Qiang Feng. Synthesis and in vitro cytotoxic activities of sorafenib derivatives[J]. Chinese Chemical Letters,
;2014, 25(05): 702-704.
doi:
10.1016/j.cclet.2014.03.020
-
A series of novel sorafenib derivatives have been designed and synthesized. The cytotoxic activities of these compounds were tested in three tumor cell lines. Most of the compounds showed potent antiproliferative activity against the tested cell lines with IC50 = 0-20 μmol/L. Some compounds demonstrated competitive antiproliferative activities to sorafenib against all three cancer cell lines. Among them, compound 5g demonstrated significant inhibitory activity against A549, ACHN and MDAMB- 231 cell lines with IC50 values of 1.29, 1.99, 3.11 μmol/L, respectively.
-
Keywords:
- Sorafenib,
- Antiproliferative activity,
- A549,
- ACHN,
- MDA-MB-231
-
-
-
[1]
[1] Cancer - Fact sheet N°297, reviewed January 2013. WHO website: http:// www.who.int/mediacentre/factsheets/fs297/en/.
-
[2]
[2] R.A. Smith, V. Cokkinides, O.W. Brawley, Cancer screening in the United States 2009: a review of current American Cancer Society guidelines and issues in cancer screening, CA Cancer J. Clin. 59 (2009) 27-41.
-
[3]
[3] D.M. Parkin, L.M. Fernandez, Use of statistics to assess the global burden of breast cancer, Breast J. 12 (2006) 570-580.
-
[4]
[4] R.C. Flanigan, A.J. Polcari, C.M. Hugen, Prognostic variables and nomograms for renal cell carcinoma, J. Urol. 18 (2011) 20-31.
-
[5]
[5] M.N. Noolvi, H.M. Patel, V. Bhardwaj, Synthesis and in vitro antitumor activity of substituted quinazoline and quinoxaline derivatives: searching for anticancer agent, Eur. J. Med. Chem. 45 (2010) 4188-4198.
-
[6]
[6] H.J. Kim, H.J. Cho, H. Kim, et al., New diarylureas and diarylamides possessing acet(benz)amidophenyl scaffold: design, synthesis, and antiproliferative activity against melanoma cell line, Bioorg. Med. Chem. Lett. 22 (2012) 3269-3273.
-
[7]
[7] M.X.Q. Sun, J.Q. Wu, et al., Design, synthesis, and in vitro antitumor evaluation of novel diaryl ureas derivatives, Eur. J. Med. Chem. 45 (2010) 2299-2306.
-
[8]
[8] C.R. Zhao, R.Q. Wang, G. Li, et al., Synthesis of indazole based diarylurea derivatives and their antiproliferative activity against tumor cell lines, Bioorg. Med. Chem. Lett. 23 (2013) 1989-1992.
-
[9]
[9] S. Wilhelm, C. Carter, M. Lynch, et al., Discovery and development of sorafenib: a multikinase inhibitor for treating cancer, Nat. Rev. Drug Discov. 5 (2006) 835-844.
-
[10]
[10] S. Ramurthy, S. Subramanian, M. Aikawa, et al., Design and synthesis of orally bioavailable benzimidazoles as Raf kinase inhibitors, J. Med. Chem. 51 (2008) 7049-7052.
-
[11]
[11] T. Eisen, T. Ahmad, K.T. Flaherty, et al., Sorafenib in advanced melanoma: a Phase Ⅱ randomized discontinuation trial analysis, Br. J. Cancer 95 (2006) 581-586.
-
[12]
[12] R.C. Kan, A.T. Farrell, H. Saber, et al., Sorafenib for the treatment of advanced renal cell carcinoma, Clin. Cancer Res. 12 (2006) 7271-7278.
-
[13]
[13] G.M. Keating, A. Santoro, Sorafenib: a review of its use in advanced hepatocellular carcinoma, Drugs 69 (2009) 223-240.
-
[14]
[14] A.Rossi,P.Maione,M.L. Ferrara, et al.,Angiogenesis inhibitors andvasculardisrupting agents in non-small cell lung cancer, Curr. Med. Chem. 16 (2009) 3919-3930.
-
[15]
[15] V. Roy, E.A. Perez, Biologic therapy of breast cancer: focus on co-inhibition of endocrine and angiogenesis pathways, Breast Cancer Res. Treat. 116 (2009) 31-38.
-
[16]
[16] J.W. Yao, Z.P. He, J. Chen, et al., Design, synthesis and biological activities of sorafenib derivatives as antitumor agents, Bioorg. Med. Chem. Lett. 22 (2012) 6549-6553.
-
[17]
[17] Y.F. Zhao, Z.J. Liu, X. Zhai, et al., Synthesis and in vitro antitumor activity of novel diaryl urea derivatives, Chin. Chem. Lett. 24 (2013) 386-388.
-
[18]
[18] K.F. Chen, W.T. Tai, C.Y. Hsu, et al., Blockade of STAT3 activation by sorafenib derivatives through enhancing SHP-1 phosphatase activity, Eur. J. Med. Chem. 55 (2012) 220-227.
-
[19]
[19] D. Bankston, J. Dumas, R. Natero, et al., A Scaleable synthesis of BAY 43-9006: a potent raf kinase inhibitor for the treatment of cancer, Org. Process Res. Dev. 6 (2002) 777-781.
-
[1]
-
-
-
[1]
Shuige Zhao , Pengcheng Yan , Peipei Liu , Haishan Liu , Ning Li , Peng Fu , Weiming Zhu . Pyridapeptides F‒I, cyclohexapeptides from marine sponge-derived Streptomyces sp. OUCMDZ-4539. Chinese Chemical Letters, 2024, 35(7): 108950-. doi: 10.1016/j.cclet.2023.108950
-
[2]
Guangyao Wang , Zhitong Xu , Ye Qi , Yueguang Fang , Guiling Ning , Junwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503
-
[3]
Ting Wang , Xin Yu , Yaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320
-
[4]
Fangping Yang , Jin Shi , Yuansong Wei , Qing Gao , Jingrui Shen , Lichen Yin , Haoyu Tang . Mixed-charge glycopolypeptides as antibacterial coatings with long-term activity. Chinese Chemical Letters, 2025, 36(2): 109746-. doi: 10.1016/j.cclet.2024.109746
-
[5]
Chong Liu , Ling Li , Jiahui Gao , Yanwei Li , Nazhen Zhang , Jing Zang , Cong Liu , Zhaopei Guo , Yanhui Li , Huayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118
-
[6]
Di ZHANG , Tianxiang XIE , Xu HE , Wanyu WEI , Qi FAN , Jie QIAO , Gang JIN , Ningbo LI . Construction and antitumor activity of pH/GSH dual-responsive magnetic nanodrug. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 786-796. doi: 10.11862/CJIC.20240329
-
[7]
Xiangyuan Zhao , Jinjin Wang , Jinzhao Kang , Xiaomei Wang , Hong Yu , Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159
-
[8]
Xinyi Hu , Riguang Zhang , Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157
-
[9]
Anqiu LIU , Long LIN , Dezhi ZHANG , Junyu LEI , Kefeng WANG , Wei ZHANG , Junpeng ZHUANG , Haijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424
-
[10]
Bin Dong , Ning Yu , Qiu-Yue Wang , Jing-Ke Ren , Xin-Yu Zhang , Zhi-Jie Zhang , Ruo-Yao Fan , Da-Peng Liu , Yong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221
-
[11]
Tao Yu , Vadim A. Soloshonok , Zhekai Xiao , Hong Liu , Jiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901
-
[12]
Jia Chen , Yun Liu , Zerong Long , Yan Li , Hongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463
-
[13]
Guoping Yang , Zhoufu Lin , Xize Zhang , Jiawei Cao , Xuejiao Chen , Yufeng Liu , Xiaoling Lin , Ke Li . Assembly of Y(Ⅲ)-containing antimonotungstates induced by malic acid with catalytic activity for the synthesis of imidazoles. Chinese Chemical Letters, 2024, 35(12): 110274-. doi: 10.1016/j.cclet.2024.110274
-
[14]
Meng Wang , Yan Zhang , Yunbo Yu , Wenpo Shan , Hong He . High-temperature calcination dramatically promotes the activity of Cs/Co/Ce-Sn catalyst for soot oxidation. Chinese Chemical Letters, 2025, 36(1): 109928-. doi: 10.1016/j.cclet.2024.109928
-
[15]
Yao HUANG , Yingshu WU , Zhichun BAO , Yue HUANG , Shangfeng TANG , Ruixue LIU , Yancheng LIU , Hong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359
-
[16]
Yun-Feng Liu , Hui-Fang Du , Ya-Hui Zhang , Zhi-Qin Liu , Xiao-Qian Qi , Du-Qiang Luo , Fei Cao . Chaeglobol A, an unusual octocyclic sterol with antifungal activity from the marine-derived fungus Chaetomium globosum HBU-45. Chinese Chemical Letters, 2025, 36(3): 109858-. doi: 10.1016/j.cclet.2024.109858
-
[17]
Xiaoli Deng , Xiangchao Lu , Yang Cao , Qianjin Chen . Electrochemical imaging uncovers the heterogeneity of HER activity by sulfur vacancies in molybdenum disulfide monolayer. Chinese Chemical Letters, 2025, 36(3): 110379-. doi: 10.1016/j.cclet.2024.110379
-
[18]
Chunmao Yuan , Yanrong Zeng , Lei Huang , Yu Mou , Jun Jin , Ping Yi , Yanmei Li , Xiaojiang Hao . Hymoins A–C, three unusual polycyclic polyprenylated acylphloroglucinols with lipid-lowering activity from Hypericum monogynum. Chinese Chemical Letters, 2025, 36(3): 109859-. doi: 10.1016/j.cclet.2024.109859
-
[19]
Sanmei Wang , Dengxin Yan , Wenhua Zhang , Liangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611
-
[20]
Shaobin He , Xiaoyun Guo , Qionghua Zheng , Huanran Shen , Yuan Xu , Fenglin Lin , Jincheng Chen , Haohua Deng , Yiming Zeng , Wei Chen . Engineering nickel-supported osmium bimetallic nanozymes with specifically improved peroxidase-like activity for immunoassay. Chinese Chemical Letters, 2025, 36(4): 110096-. doi: 10.1016/j.cclet.2024.110096
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(771)
- HTML views(16)