Citation: Chuan-Cai Fan, Li-Jin Xu, Han-Yuan Gong. Neutral C-H bond vs. electron pair of N(sp2):A binding site effect study of macrocycle anion receptor[J]. Chinese Chemical Letters, ;2014, 25(8): 1125-1131. doi: 10.1016/j.cclet.2014.03.019 shu

Neutral C-H bond vs. electron pair of N(sp2):A binding site effect study of macrocycle anion receptor

  • Corresponding author: Li-Jin Xu,  Han-Yuan Gong, 
  • Received Date: 7 January 2014
    Available Online: 21 February 2014

    Fund Project:

  • To evaluate the effect of neutral C-H bond or electron pair of nitrogen atom with sp2 hybridization (N(sp2)) involving into the same chemical environment for anion binding, two analogous tetracationic imidazolium macrocycles, namely cyclo[2](2,6-bis-(1H-imidazol-1-yl)pyridine) [2](1,3-dimethylenebenzene) (14+), and cyclo[2](2,6-bis-(1H-imidazol-1-yl)pyridine)[2](2,6-di methylenepyridine) (24+) were studied in detail as small inorganic anion receptors. The guest anions with different shapes are Cl-, N3-, NO3-, and H2PO4-. The host-guest interactions were characterized via 1H NMR spectroscopy, electrospray ionization mass spectrometry (ESI-MS) and single crystal X-ray crystallography. The results implied that macrocyclic hosts with similar backbone but two distinct binding sites (14+ with neutral C-H vs. 24+ with N (sp2)) vary markedly in their response to anions, including the binding modes and association constants. The finding will serve to the construction of new anion receptors, even improve insights into the anion binding process in biology.
  • 加载中
    1. [1]

      [1] (a) H. Juwarker, K.S. Jeong, Anion-controlled foldamers, Chem. Soc. Rev. 39 (2010) 3664-3674; (b) L. Li, T.L. Hu, Y.F. Zeng, X.H. Bu, Novel coordination polymers with 1,4-di(benzimidazole-1-yl) benzene modulated by an anion: syntheses, structures and properties, Sci. China Ser. B: Chem. 53 (2010) 2170-2176; (c) H.T. Chifotides, K.R. Dunbar, Anion-p interactions in supramolecular architectures, Acc. Chem. Res. 46 (2013) 894-906; (d) J.V. Gavette, N.S. Mills, L.N. Zakharov, et al., An anion-modulated three-way supramolecular switch that selectively binds dihydrogen phosphate, H2PO4, Angew. Chem. Int. Ed. 125 (2013) 10460-10464; (e) X.M. Liu, Q. Zhao, Y. Li, et al., Two new indole derivatives as anion receptors for detecting fluoride ion, Chin. Chem. Lett. 24 (2013) 962-966; (f) Z.Y. Dong, D.W. Zhang, X.Z. Jiang, H. Li, G.H. Gao, A viologen-urea-based anion receptor: colorimetric sensing of dicarboxylate anions, Chin. Chem. Lett. 24 (2013) 688-690.

    2. [2]

      [2] (a) R. Dutzler, E.B. Campbell, M. Cadene, B.T. Chait, R. Mackinnon, X-Ray structure of a ClC chloride channel at 3.0Å reveals the molecular basis of anion selectivity, Nature 415 (2002) 287-294; (b) N.J. Robertson, H.A.I.V. Kostalik, T.J. Clark, P.F. Mutolo, H.D. Abruña, G.W. Coates, Tunable high performance cross-linked alkaline anion exchange membranes for fuel cell applications, J. Am. Chem. Soc. 132 (2010) 3400-3404; (c) P.A. Gale, From anion receptors to transporters, Acc. Chem. Res. 44 (2011) 216-226; (d) N. Busschaert, P.A. Gale, Small-molecule lipid-bilayer anion transporters for biological applications, Angew. Chem. Int. Ed. 52 (2013) 1374-1382.

    3. [3]

      [3] (a) B.E. Gurkan, J.C. Fuente, E.M. Mindrup, et al., Equimolar CO2 absorption by anion-functionalized ionic liquids, J. Am. Chem. Soc. 132 (2010) 2116-2117; (b) J.J. Huang, X. Zhang, L.L. Bai, S.G. Yuan, Polyphenylene sulfide based anion exchange fiber: synthesis, characterization and adsorption of Cr(VI), J. Environ. Sci. 24 (2012) 1433-1438; (c) H.Q. Song, Y. Zhou, A.M. Li, S. Mueller, Selective removal of nitrate by using a novel macroporous acrylic anion exchange resin, Chin. Chem. Lett. 24 (2013) 603-606.

    4. [4]

      [4] (a) S.Y. Liu, F.J. Wang, L.H. Wei, et al., Synthesis and anion recognition of neutral receptors based on multiamide calix[4]arene, Sci. China Ser. B: Chem. 47 (2004) 145-151; (b) M.X. Wang, Nitrogen and oxygen bridged calixaromatics: synthesis, structure, functionalization, and molecular recognition, Acc. Chem. Res. 45 (2012) 182-195; (c) F. Zapata, A. Caballero, N.G. White, et al., Fluorescent charge-assisted halogen-bondingmacrocyclic halo-imidazoliumreceptors for anion recognition and sensing in aqueous media, J. Am. Chem. Soc. 134 (2012) 11533-11541; (d) C. Jin, M. Zhang, L. Wu, et al., Squaramide-based tripodal receptors for selective recognition of sulfate anion, Chem. Commun. 49 (2013) 2025-2027; (e) M. Cametti, K. Rissanen, Highlights on contemporary recognition and sensing of fluoride anion in solution and in the solid state, Chem. Soc. Rev. 42 (2013) 2016-2038.

    5. [5]

      [5] (a) D.W. Yoon, D.E. Gross, V.M. Lynch, et al., Benzene-, pyrrole-, and furancontaining diametrically strapped calix[4]pyrroles-an experimental and theoretical study of hydrogen-bonding effects in chloride anion recognition, Angew. Chem. Int. Ed. 47 (2008) 5038-5042; (b) K.P. McDonald, Y.R. Hua, A.H. Flood, 1,2,3-Triazoles and the expanding utility of charge neutral CH-anion interactions, Top. Heterocycl. Chem. 24 (2010) 341-366; (c) S. Beckendorf, S. Asmus, C. Muck-Lichtenfeld, O.G. Mancheno, "Click'' bistriazoles as neutral C-H...anion-acceptor organocatalysts, Chem. Eur. J. 19 (2013) 1581-1585; (d) N.G. White, P.D. Beer, A rotaxane host system containing integrated triazole C-H hydrogen bond donors for anion recognition, Org. Biomol. Chem. 11 (2013) 1326-1333.

    6. [6]

      [6] (a) V.S. Bryantsev, B.P. Hay, Are C-H groups significant hydrogen bonding sites in anion receptors? Benzene complexes with Cl-, NO3-, and ClO4, J. Am. Chem. Soc. 127 (2005) 8282-8283; (b) V.S. Bryantsev, B.P. Hay, Influence of substituents on the strength of aryl C-H anion hydrogen bonds, Org. Lett. 7 (2005) 5031-5034; (c) L. Pedzisa, B.P. Hay, Aliphatic C-H anion hydrogen bonds: weak contacts or strong interactions, J. Org. Chem. 74 (2009) 2554-2560; (d) J. Nadas, S. Vukovic, B.P. Hay, Alkyl chlorides as hydrogen bond acceptors, Comput. Theor. Chem. 988 (2012) 75-80.

    7. [7]

      [7] Y.J. Li, A.H. Flood, Strong, size-selective, and electronically tunable C-H halide binding with steric control over aggregation from synthetically modular, shapepersistent[34] triazolophanes, J. Am. Chem. Soc. 130 (2008) 12111-12122.

    8. [8]

      [8] (a) A.I. Share, K. Parimal, A.H. Flood, Bilability is defined when one electron is used to switch between concerted and stepwise pathways in Cu(Ⅰ)-based bistable [2/3] pseudorotaxanes, J. Am. Chem. Soc. 132 (2010) 1665-1675; (b) Y. Yi, S.X. Fa, W. Cao, et al., Fabrication of well-defined crystalline azacalixarene nanosheets assisted by Se N non-covalent interactions, Chem. Commun. 48 (2012) 7495-7497; (c) D. Sakow, B. Böker, K. Brandhorst, O. Burghaus, M. Bröring, 10-Heterocorroles: ring-contracted porphyrinoids with fine-tuned aromatic and metal-binding properties, Angew. Chem. Int. Ed. 52 (2013) 4912-4915.

    9. [9]

      [9] (a) G.R. Desiraju, T. Steiner, The Weak Hydrogen Bond in Structural Chemistry and Biology, Oxford University Press Inc., New York, 1999; (b) B.C. Gorske, J.R. Stringer, B.L. Bastian, S.A. Fowler, H.E. Blackwell, New strategies for the design of folded peptoids revealed by a survey of noncovalent interactions in model systems, J. Am. Chem. Soc. 131 (2009) 16555-16567; (c) S.J. Grabowski, What is the covalency of hydrogen bonding? Chem. Rev. 111 (2011) 2597-2625.

    10. [10]

      [10] H.Y. Gong, B.M. Rambo, V.M. Lynch, K.M. Keller, J.L. Sessler, "Texas-sized'' molecular boxes: building blocks for the construction of anion-induced supramolecular species via self-assembly, J. Am. Chem. Soc. 135 (2013) 6330-6337.

    11. [11]

      [11] P. Job, Job's method of continuous variation, Ann. Chim. 9 (1928) 113-203.

    12. [12]

      [12] H. Friebolin, Basic One-and Two-dimensional NMR Spectroscopy, Wiley-VCH, Weinheim, NY, 2005.

    13. [13]

      [13] CrystalClear Version 1.4, A program for collecting and processing single crystal data on area detectors, in: Rigaku Americas, Inc, The Woodlands, TX, USA, 2005.

    14. [14]

      [14] A. Altomare, M.C. Burla, M. Camalli, et al., SIR97: a new tool for crystal structure determination and refinement, J. Appl. Cryst. 32 (1999) 115-119.

    15. [15]

      [15] G.M. Sheldrick, SHELX97, Program for the Refinement of Crystal Structures, University of Gottingen, Germany, 1994.

    16. [16]

      [16] R.I. Cooper, R.O. Gould, S. Parsons, D.J. Watkin, The derivation of non-merohedral twin laws during refinement by analysis of poorly fitting intensity data and the refinement of non-merohedrally twinned crystal structures in the program crystals, J. Appl. Cryst. 35 (2002) 168-174.

    17. [17]

      [17] L.J. Farrugia, WinGX suite for small-molecule single-crystal crystallography, J. Appl. Cryst. 32 (1999) 837-838.

    18. [18]

      [18] G.M. Sheldrick, A short history of SHELX, Acta Cryst. A64 (2008) 112-122.

    19. [19]

      [19] K.A. Connors, Binding Constants, John Wiley and Sons, New York, 1987.

    20. [20]

      [20] P. Gans, A. Sabatini, A. Vacca, Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs, Talanta 43 (1996) 1739-1753.

  • 加载中
    1. [1]

      Shuo LiQianfa LiuLijun MaoXin ZhangChunju LiDa Ma . Benzothiadiazole-based water-soluble macrocycle: Synthesis, aggregation-induced emission and selective detection of spermine. Chinese Chemical Letters, 2024, 35(11): 109791-. doi: 10.1016/j.cclet.2024.109791

    2. [2]

      Qiao ZhangXin TanZihang LiuJingyu MaDongqi CaoFenfang LiShengyi Dong . Optically healable and mechanically tough supramolecular glass from low-molecular-weight compounds. Chinese Chemical Letters, 2025, 36(8): 110660-. doi: 10.1016/j.cclet.2024.110660

    3. [3]

      Qihan LinJiabin XingYue-Yang LiuGang WuShi-Jia LiuHui WangWei ZhouZhan-Ting LiDan-Wei ZhangtaBOX: A water-soluble tetraanionic rectangular molecular container for conjugated molecules and taste masking for berberine and palmatine. Chinese Chemical Letters, 2024, 35(5): 109119-. doi: 10.1016/j.cclet.2023.109119

    4. [4]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    5. [5]

      Baoqi WuRongzhi TangZhi-Wei LiFeng LinZongyu SunHuanyu XiaLin JiangYu Tan . Selective encapsulation of azo compounds by tetracationic cyclophane in water and photo-controlled reversible release. Chinese Chemical Letters, 2025, 36(9): 110896-. doi: 10.1016/j.cclet.2025.110896

    6. [6]

      Xin ZhangZhihao LuTianci RenJunxiang TangShuo LiChenghao ZhuLijun MaoDa Ma . Fluorescent "Texas-sized" macrocyclic receptors for the recognition and detection of nucleotides in water. Chinese Chemical Letters, 2025, 36(11): 110946-. doi: 10.1016/j.cclet.2025.110946

    7. [7]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    8. [8]

      Lei WanYizhou TongXi LuYao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283

    9. [9]

      Xiangyang JiYishuang ChenPeng ZhangShaojia SongJian LiuWeiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719

    10. [10]

      Xinghao CaiChen MaYing KangYuqiang RenXue MengWei LuShiming FanShouxin Liu . Nickel-catalyzed C(sp2)–H alkynylation of free α-substituted benzylamines using a transient directing group. Chinese Chemical Letters, 2025, 36(10): 110901-. doi: 10.1016/j.cclet.2025.110901

    11. [11]

      Jialin HuangLiying FuZhanyong TangXiaoqiang MaXingda ZhaoDepeng Zhao . Cross-coupling of trifluoromethylarenes with alkynes C(sp)-H bonds and azoles C(sp2)-H bonds via photoredox/copper dual catalysis. Chinese Chemical Letters, 2025, 36(7): 110505-. doi: 10.1016/j.cclet.2024.110505

    12. [12]

      Yunkang TongHaiqiao HuangHaolan LiMingle LiWen SunJianjun DuJiangli FanLei WangBin LiuXiaoqiang ChenXiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663

    13. [13]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    14. [14]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    15. [15]

      Cong-Bin JiDing-Xiong XieMei ChenYe-Ying LanBao-Hua ZhangJi-Ying YangZheng-Hui KangShu-Jie ChenYu-Wei ZhangYun-Lin Liu . Green synthesis of 2-trifluoromethylquinoline skeletons via organocatalytic N-[(α-trifluoromethyl)vinyl]isatins CN bond activation. Chinese Chemical Letters, 2025, 36(7): 110598-. doi: 10.1016/j.cclet.2024.110598

    16. [16]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    17. [17]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    18. [18]

      Yang LiYanan DongZhihong WeiChangzeng YanZhen LiLin HeYuehui Li . Fluoride-promoted Ni-catalyzed cyanation of C–O bond using CO2 and NH3. Chinese Chemical Letters, 2025, 36(5): 110206-. doi: 10.1016/j.cclet.2024.110206

    19. [19]

      Huirong Chen Yingzhi He Yan Han Jianbo Hu Jiantang Li Yunjia Jiang Basem Keshta Lingyao Wang Yuanbin Zhang . A new SIFSIX anion pillared cage MOF with crs topological structure for efficient C2H2/CO2 separation. Chinese Journal of Structural Chemistry, 2025, 44(2): 100508-100508. doi: 10.1016/j.cjsc.2024.100508

    20. [20]

      Peng WangJianjun WangNi SongXin ZhouMing Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748

Metrics
  • PDF Downloads(0)
  • Abstract views(1180)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return