Citation: Hua Cheng, Qiong-You Wu, Fan Han, Guang-Fu Yang. Efficient synthesis of 4-substituted pyrazole via microwave-promoted Suzuki cross-coupling reaction[J]. Chinese Chemical Letters, ;2014, 25(05): 705-709. doi: 10.1016/j.cclet.2014.03.013 shu

Efficient synthesis of 4-substituted pyrazole via microwave-promoted Suzuki cross-coupling reaction

  • Corresponding author: Qiong-You Wu,  Guang-Fu Yang, 
  • Received Date: 20 December 2013
    Available Online: 21 February 2014

    Fund Project:

  • Pyrazoles and their derivatives are important heterocycles found in nature and present in numerous bioactive compounds. In contrast to 3 or 5-aryl pyrazole, the preparation of 4-aryl pyrazole is fairly rare. Utilizing microwave irradiation, the synthesis of 4-substituted-arylpyrazole via Suzuki cross-coupling has been developed with a wide range of substrates. The remarkable advantages of this method are mild reaction conditions, simple operation, high yield, and short reaction time. Product structures were identified by MS, 1H NMR, 13C NMR, and elemental analysis.
  • 加载中
    1. [1]

      [1] J.T. Hu, S. Chen, Y.H. Sun, J. Yang, Y. Rao, Synthesis of tri- and tetrasubstituted pyrazoles via Ru(Ⅱ) catalysis: intramolecular aerobic oxidative C-N coupling, Org. Lett. 14 (2012) 5030-5033.

    2. [2]

      [2] J. Huang, J.T. Hong, S.H. Hong, Suzuki-Miyaura cross-coupling reaction catalyzed by PEPPSI-type 1,4-di(2,6-diisopropylphenyl)-1,2,3-triazol-5-ylidene (tzIPr) palladium complex, Eur. J. Org. Chem. 33 (2012) 6630-6635.

    3. [3]

      [3] S. Fustero, M.S. Rosell, P. Barrio, A.S. Fuentes, From 2000 to Mid-2010: a fruitful decade for the synthesis of pyrazoles, Chem. Rev. 111 (2011) 6984-7034.

    4. [4]

      [4] C.M. Stellrecht, L.S. Chen, Transcription inhibition as a therapeutic target for cancer, Cancers 3 (2011) 4170-4190.

    5. [5]

      [5] C. Selvam, S.M. Jachak, R. Thilagavathi, A.K. Chakraborti, Design, synthesis, biological evaluation and molecular docking of curcumin analogues as antioxidant, cyclooxygenase inhibitory and anti-inflammatory agents, Bioorg. Med. Chem. Lett. 15 (2005) 1793-1797.

    6. [6]

      [6] J.P. Chupp, B.C. Hamper, W.R. Harold, Heterocyclic and carbocyclic-substituted benzoic acid and synthesis thereof, WO 9602515 (1996).

    7. [7]

      [7] K. Mitsuru, M. Tsutomu, Y. Miura, et al., 3-(Substituted phenyl) pyrazole derivatives, salts thereof, herbicides there from, and process for producing said derivatives or salts, EP 0361114 (1990).

    8. [8]

      [8] C.L. Liu, M. Li, H. Zhang, et al., Substituted azole compounds and its preparation and use thereof, US 7795179 (2010).

    9. [9]

      [9] C.L. Liu, B.S. Chi, New Agrochemicals Discovery and Synthesis, Chemical Industry Press, Beijing, 2013, pp. 251-252.

    10. [10]

      [10] A. Tanitame, Y. Oyamada, K.O. Fuji, et al., Synthesis and antibacterial activity of a novel series of potent DNA gyrase inhibitors. Pyrazole derivatives, J. Med. Chem. 47 (2004) 3693-3696.

    11. [11]

      [11] T.L. Gilchrist, Heterocyclic Chemistry, 3rd ed., Longman Press, Essex, 1997.

    12. [12]

      [12] X. Wang, J. Tan, K. Grozinger, Cross-coupling of 1-aryl-5-bromopyrazoles: regioselective synthesis of 3,5-disubstituted 1-arylpyrazoles, Tetrahedron Lett. 41 (2000) 4713-4716.

    13. [13]

      [13] C. Dvorak, D.A. Rudolph, S. Ma, N.I. Carruthers, Palladium-catalyzed coupling of pyrazole triflates with arylboronic acids, J. Org. Chem. 70 (2005) 4188-4190.

    14. [14]

      [14] T. Zhang, X.D. Gao, H.B. Wood, Pd-catalyzed Negishi coupling of pyrazole triflates with alkyl zinc halides Pd-catalyzed Negishi coupling of pyrazole triflates with alkyl zinc halides, Tetrahedron Lett. 52 (2011) 311-313.

    15. [15]

      [15] G.M. Organ, S. Mayer, Synthesis of 4-(5-iodo-3-methylpyrazolyl) phenylsulfonamide and its elaboration to a COX Ⅱ inhibitor library by solution-phase Suzuki coupling using Pd/C as a solid-supported catalyst, J. Comb. Chem. 5 (2003) 118- 124.

    16. [16]

      [16] T. Nakamura, M. Sato, H. Kakinuma, et al., Pyrazole and isoxazole derivatives as new, potent, and selective 20-hydroxy-5,8,11,14-eicosatetraenoic acid synthase inhibitors, J. Med. Chem. 46 (2003) 5416-5427.

    17. [17]

      [17] R.B. Teegarden, H.M. Li, H. Jayakumar, et al., Discovery of 1-[3-(4-bromo-2- methyl-2H-pyrazol-3-yl)-4-methoxyphenyl]-3-(2,4-difluorophenyl)urea (Nelotanserin) and related 5-hydroxytryptamine2A inverse agonists for the treatment of insomnia, J. Med. Chem. 53 (2010) 1923-1936.

    18. [18]

      [18] D.K. James, S.J. Edeson, S. Stokes, et al., Synthesis of ynone trifluoroborates toward functionalized pyrazoles, Org. Lett. 14 (2012) 5354-5357.

    19. [19]

      [19] A. Tinarelli, R. Paolo, A. Daniele, et al., Regioselective synthesis of 1,3,5- and 1,3,4,5-substituted pyrazoles via acylation of N-Boc-N-substituted hydrazones, Tetrahedron 67 (2011) 612-617.

    20. [20]

      [20] M. Carlos, M. Javier, C. Mercedes, J.M. Mínguez, Regioselective palladium-catalyzed arylation of 4-chloropyrazoles, Org. Lett. 12 (2010) 4924-4927.

    21. [21]

      [21] S. Majumder, K.R. Gipson, R.J. Staples, A.L. Odoma, Pyrazole synthesis using a titanium-catalyzed multicomponent coupling reaction and synthesis of withasomnine, Adv. Synth. Catal. 351 (2009) 2013-2023.

    22. [22]

      [22] W.J. Tang, A.G. Capacci, X.D. Wei, et al., A general and special catalyst for suzukimiyaura coupling processes, Angew. Chem. Int. Ed. 49 (2010) 5879-5883.

    23. [23]

      [23] B.J. Melancon, M.S. Poslusnery, P.R. Gentry, et al., Isatin replacements applied to the highly selective,muscarinicM1 PAM ML137: continued optimization of an MLPCN probe molecule, Bioorg. Med. Chem. Lett. 23 (2013) 412-416.

    24. [24]

      [24] C.O. Kappe, Controlled microwave heating in modern organic synthesis, Angew. Chem. Int. Ed. 43 (2004) 6250-6284.

    25. [25]

      [25] D. Dallinger, N.Y. Gorobets, C.O. Kappe, High-throughput synthesis of N3-acylated dihydropyrimidines combining microwave-assisted synthesis and scavenging techniques, Org. Lett. 5 (2003) 1205-1208.

    26. [26]

      [26] M. Nuchter, B. Ondruschka, W. Bonrath, A. Gum, Microwave assisted synthesis—a critical technology overview, Green Chem. 6 (2004) 128-141.

    27. [27]

      [27] Y.C. Liu, C.J. Ye, Q. Chen, G.F. Yang, Efficient synthesis of bulky 4-substitutedisatins via microwave-promoted Suzuki cross-coupling reaction, Tetrahedron Lett. 54 (2013) 949-955.

    28. [28]

      [28] Y.C. Liu, Z.Y. Huang, Q. Chen, G.F. Yang, Efficient synthesis of functionalized 6- arylsalicylates via microwave-promoted Suzuki cross-coupling reaction, Tetrahedron 69 (2013) 9025-9032.

    29. [29]

      [29] E.P. Murray, b-Nucleophilic substitution in indoles: the synthesis of chartellamide A, M.S. Thesis, University of Manchester, 1994.

  • 加载中
    1. [1]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    2. [2]

      Qinwen ZhengXin LiuLintao TianYi ZhouLibing LiaoGuocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771

    3. [3]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    4. [4]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

    5. [5]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    6. [6]

      Yuhan LiuJingyang ZhangGongming YangJian Wang . Highly enantioselective carbene-catalyzed δ-lactonization via radical relay cross-coupling. Chinese Chemical Letters, 2025, 36(1): 109790-. doi: 10.1016/j.cclet.2024.109790

    7. [7]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    8. [8]

      Peng GuoShicheng DongXiang-Gui ZhangBing-Bin YangJun ZhuKe-Yin Ye . Cobalt-catalyzed migratory carbon-carbon cross-coupling of borabicyclo[3.3.1]nonane (9-BBN) borates. Chinese Chemical Letters, 2025, 36(4): 110052-. doi: 10.1016/j.cclet.2024.110052

    9. [9]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    10. [10]

      Qinghong ZhangQiao ZhaoXiaodi WuLi WangKairui ShenYuchen HuaCheng GaoYu ZhangMei PengKai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167

    11. [11]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    12. [12]

      Keke HanWenjun RaoXiuli YouHaina ZhangXing YeZhenhong WeiHu Cai . Two new high-temperature molecular ferroelectrics [1,5-3.2.2-Hdabcni]X (X = ClO4, ReO4). Chinese Chemical Letters, 2024, 35(6): 108809-. doi: 10.1016/j.cclet.2023.108809

    13. [13]

      Qingyun HuWei WangJunyuan LuHe ZhuQi LiuYang RenHong WangJian Hui . High-throughput screening of high energy density LiMn1-xFexPO4 via active learning. Chinese Chemical Letters, 2025, 36(2): 110344-. doi: 10.1016/j.cclet.2024.110344

    14. [14]

      Guang XuCuiju ZhuXiang LiKexin ZhuHao Xu . Copper-catalyzed asymmetric [4+1] annulation of yne–allylic esters with pyrazolones. Chinese Chemical Letters, 2025, 36(4): 110114-. doi: 10.1016/j.cclet.2024.110114

    15. [15]

      Bairu MengZongji ZhuoHan YuSining TaoZixuan ChenErik De ClercqChristophe PannecouqueDongwei KangPeng ZhanXinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827

    16. [16]

      Xianchen HuJunli YangFang GaoZhiyong ZhaoSimin Liu . Highly selective [4+4] cross-photodimerization of (4a-azonia)anthracenes driven by confinement of D-A hetero-guest pair in cucurbit[10]uril host. Chinese Chemical Letters, 2025, 36(3): 109967-. doi: 10.1016/j.cclet.2024.109967

    17. [17]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    18. [18]

      Jiao ChenZihan ZhangGuojin SunYudi ChengAihua WuZefan WangWenwen JiangFulin ChenXiuying XieJianli Li . Benzo[4,5]imidazo[1,2-a]pyrimidine-based structure-inherent targeting fluorescent sensor for imaging lysosomal viscosity and diagnosis of lysosomal storage disorders. Chinese Chemical Letters, 2024, 35(11): 110050-. doi: 10.1016/j.cclet.2024.110050

    19. [19]

      Binyang QinMengqi WangShimei WuYining LiChilin LiuYufei ZhangHaosen Fan . Carbon dots confined nanosheets assembled NiCo2S4@CDs cross-stacked architecture for enhanced sodium ion storage. Chinese Chemical Letters, 2024, 35(7): 108921-. doi: 10.1016/j.cclet.2023.108921

    20. [20]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

Metrics
  • PDF Downloads(0)
  • Abstract views(757)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return