Citation: Yu-Bo Jiang, Wen-Sheng Zhang, Hui-Ling Cheng, Yu-Qi Liu, Rui Yang. One-pot synthesis of N-aryl propargylamine from aromatic boronic acid, aqueous ammonia, and propargyl bromide under microwave-assisted conditions[J]. Chinese Chemical Letters, ;2014, 25(05): 779-782. doi: 10.1016/j.cclet.2014.03.011 shu

One-pot synthesis of N-aryl propargylamine from aromatic boronic acid, aqueous ammonia, and propargyl bromide under microwave-assisted conditions

  • Corresponding author: Yu-Bo Jiang, 
  • Received Date: 15 November 2013
    Available Online: 20 February 2014

    Fund Project: The authors would like to thank the National Natural Science Foundation of China (No. 21262020) (No. 21262020) the Natural Science Foundation of Yunnan Education Department (No. 09Y0081) (No. KKSY201207140) and the Analysis and Measurement Foundation of Kunming University of Science and Technology (No. 20130560) for their financial supports. (No. 09Y0081)

  • A facile, one-pot synthesis of N-aryl propargylamine from aromatic boronic acid, aqueous ammonia, and propargyl bromide has been achieved under microwave-assisted conditions. The reactions can be smoothly completed within a total 10 min through a two-step procedure, including copper-catalyzed coupling of aromatic boronic acids with aqueous ammonia and following propargylation by propargyl bromide.
  • 加载中
    1. [1]

      [1] (a) J.M. Holub, K. Kirshenbaum, Tricks with clicks: modification of peptidomimetic oligomers via copper-catalyzed azide-alkyne [3+2] cycloaddition, Chem. Soc. Rev. 39 (2010) 1325-1337; (b) A. Soules, B. Ameduri, B. Boutevin, G. Calleja, Original fluorinated copolymers achieved by both azide/alkyne "click" reaction and Hay coupling from tetrafluoroethylene telomers, Macromolecules 43 (2010) 4489-4499; (c) Z.W. Chen, D.N. Ye, Y.P. Qian, M. Ye, L.X. Liu, Highly efficient AgBF4-catalyzed synthesis of methyl ketones from terminal alkynes, Tetrahedron 69 (2013) 6116- 6120; (d) S. Bew, G. Hiatt-Gipson, J.A. Lovell, C. Poullain, Mild reaction conditions for the terminal deuteration of alkynes, Org. Lett. 14 (2012) 456-459; (e) Z.M. Dong, Z.B. Ye, Synthesis of hyperbranched poly(phenylacetylene)s containing pendant alkyne groups by one-pot Pd-catalyzed copolymerization of phenylacetylene with diynes, Macromolecules 45 (2012) 5020-5031; (f) N. Onishi, M. Shiotsuki, T. Masuda, N. Sano, F. Sanda, Polymerization of phenylacetylenes using rhodium catalysts coordinated by norbornadiene linked to a phosphino or amino group, Organometallics 32 (2013) 846-853; (g) B.W. Zhou, H. Chen, C.Y. Wang, Mn-catalyzed aromatic C-H alkenylation with terminal alkynes, J. Am. Chem. Soc. 135 (2013) 1264-1267.

    2. [2]

      [2] (a) A. Zarei, One-pot, efficient, and regioselective syntheses of 1,4-disubstituted 1,2,3-triazoles using aryldiazonium silica sulfates in water, Tetrahedron Lett. 53 (2012) 5176-5179; (b) W.S. Zhang, C.X. Kuang, Q. Yang, Synthesis of phenyl azides bearing (E)-2- halovinyl group, Res. Chem. Intermed. 38 (2012) 37-44; (c) Z.Z. Huang, R.L. Wang, S.R. Sheng, R.Y. Zhou, M.Z. Cai, Preparation of polystyrene- supported vinyl sulfone and its application in the solid-phase organic synthesis of 1-monosubstituted 1,2,3-triazoles, React. Funct. Polym. 73 (2013) 224-227; (d) Q. Yang, Y.B. Jiang, C.X. Kuang, Facile one-pot synthesis of monosubstituted 1- aryl-1H-1,2,3-triazoles from arylboronic acids and prop-2-ynoic acid (=propiolic acid) or calcium acetylide (=calcium carbide) as acetylene source, Helv. Chim. Acta 95 (2012) 448-454; (e) M. Xu, C.X. Kuang, Z. Wang, Q. Yang, Y.B. Jiang, A novel approach to 1- monosubstituted 1,2,3-triazoles by a click cycloaddition/decarboxylation process, Synthesis (2011) 223-228; (f) Y.B. Jiang, C.X. Kuang, Q. Yang, Facile and quick synthesis of 1-monosubstituted aryl 1,2,3-triazoles: a copper-free [3+2] cycloaddition, Tetrahedron 67 (2011) 289-292; (g) L. Wu, Y. Xie, Z. Chen, Y. Niu, Y. Liang, A convenient synthesis of 1-substituted 1,2,3-triazoles via CuI/Et3N catalyzed ‘click chemistry' from azides and acetylene gas, Synlett (2009) 1453-1456.

    3. [3]

      [3] (a) Y.Y. Liu, C.P. Wang, X.B. Wang, J.P. Wan, Enaminone ligand-assisted homoand cross-coupling of terminal alkynes under mild conditions, Tetrahedron Lett. 54 (2013) 3953-3955; (b) D.H. Bai, C.J. Li, J. Li, X.S. Jia, New progress of acetylene-coupling reactions, Chin. J. Org. Chem. 32 (2012) 994-1009; (c) X.J. Niu, C.J. Li, J. Li, X.S. Jia, Importance of bases on the copper-catalyzed oxidative homocoupling of terminal alkynes to 1,4-disubstituted 1,3-diynes, Tetrahedron Lett. 53 (2012) 5559-5561; (d) L.L. Li, C.Y. Nan, Q. Peng, Y.D. Li, Selective synthesis of Cu2O nanocrystals as shape-dependent catalysts for oxidative arylation of phenylacetylene, Chem. Eur. J. 18 (2012) 10491-10496; (e) Z.Q. Weng, H.F. Li, W.M. He, et al., Mild copper-catalyzed trifluoromethylation of terminal alkynes using an electrophilic trifluoromethylating reagent, Tetrahedron 68 (2012) 2527-2531; (f) S.S. Patil, R.P. Jadhav, S.V. Patil, V.D. Bobade, Ligand and solvent-free iron catalyzed oxidative alkynylation of azoles with terminal alkynes, Tetrahedron Lett. 52 (2011) 5617-5619; (g) X.P. Nie, S.L. Liu, Y. Zong, P.P. Sun, J.C. Bao, Facile synthesis of substituted alkynes by nano-palladium catalyzed oxidative cross-coupling reaction of arylboronic acids with terminal alkynes, J. Organomet. Chem. 696 (2011) 1570-1573; (h) H. Xu, S.J. Gu, W.Z. Chen, D.C. Li, J.M. Dou, TBAF-mediated reactions of 1,1- dibromo-1-alkenes with thiols and amines and regioselective synthesis of 1,2- heterodisubstituted alkenes, J. Org. Chem. 76 (2011) 2448-2458; (i) B. Movassagh, M. Navidi, A simple and effective approach to the synthesis of alkynyl selenides from terminal alkynes, Chin. Chem. Lett. 23 (2012) 1035-1038; (j) Q.F. Zhou, X.P. Chu, S. Zhao, T. Lu, W.F. Tang, BF3·Et2O promoted conjugate addition of ethanethiol to electron-deficient alkynes, Chin. Chem. Lett. 23 (2012) 639-642; (k) M. Bakherad, A. Amin, A. Keivanloo, B. Bahramian, M. Raessi, Using Pd-salen complex as an efficient catalyst for the copper- and solvent-free coupling of acyl chlorides with terminal alkynes under aerobic conditions, Chin. Chem. Lett. 21 (2010) 656-660.

    4. [4]

      [4] E. Quesada, S.A. Raw, M. Reid, E. Roman, R.J.K. Taylor, One-pot conversion of activated alcohols into 1,1-dibromoalkenes and terminal alkynes using tandem oxidation processes with manganese dioxide, Tetrahedron 62 (2006) 6673-6680.

    5. [5]

      [5] R. Aitken, S. Seth, Convenient 2-step conversion of acid-chlorides to terminal alkynes, Synlett (1990) 211.

    6. [6]

      [6] H.D. Dickson, S.C. Smith, K.W. Hinkle, A convenient scalable one-pot conversion of esters and Weinreb amides to terminal alkynes, Tetrahedron Lett. 45 (2004) 5597-5599.

    7. [7]

      [7] (a) X.Z. Cheng, J. Jia, C.X. Kuang, Convenient synthesis of terminal alkynes from anti-3-aryl-2,3-dibromopropanoic acids using a K2CO3/DMSO system, Chin. J. Chem. 29 (2011) 2350-2354; (b) S. Shenawi-Khalil, S.U. Sonavane, Y. Sasson, Synthesis of acetylenes via dehydrobromination using solid anhydrous potassium phosphate as the base under phase-transfer conditions, Tetrahedron Lett. 53 (2012) 2295-2297; (c) M. Zhao, C.X. Kuang, Q. Yang, X.Z. Cheng, Cs2CO3-mediated synthesis of terminal alkynes from 1,1-dibromo-1-alkenes, Tetrahedron Lett. 52 (2011) 992-994.

    8. [8]

      [8] (a) K. Park, G. Bae, J. Moon, et al., Synthesis of symmetrical and unsymmetrical diarylalkynes from propiolic acid using palladium-catalyzed decarboxylative coupling, J. Org. Chem. 75 (2010) 6244-6251; (b) K. Park, T. Palani, A. Pyo, S. Lee, Synthesis of aryl alkynyl carboxylic acids and aryl alrynes from propiolic acid and aryl halides by site selective coupling and decarboxylation, Tetrahedron Lett. 53 (2012) 733-737.

    9. [9]

      [9] J. Li, P.C. Huang, A rapid and efficient synthetic route to terminal aryl-acetylenes by tetrabutylammonium hydroxide- and methanol-catalyzed cleavage of 4-aryl- 2-methyl-3-butyn-2-ols, Beilstein J. Org. Chem. 7 (2011) 426-431.

    10. [10]

      [10] H.H. Rao, H. Fui, Y.Y. Jiang, Y.F. Zhao, Easy copper-catalyzed synthesis of primary aromatic amines by couplings aromatic boronic acids with aqueous ammonia at room temperature, Angew. Chem. Int. Ed. 48 (2009) 1114-1116.

    11. [11]

      [11] M.A. Holman, N.M. Williamson, A.D. Ward, Preparation and cyclization of some N- (2,2-dimethylpropargyl) homo- and heteroaromatic amines and the synthesis of some pyrido[2,3-d]pyrimidines, Aust. J. Chem. 58 (2005) 368-374.

    12. [12]

      [12] K.C. Majumdar, R.K. Nandi, S. Ganai, A. Taher, Regioselective synthesis of annulated quinoline and pyridine derivatives by silver-catalyzed 6-endo-dig cycloisomerization, Synlett 42 (2011) 116-120.

  • 加载中
    1. [1]

      Qiang CaoXue-Feng ChengJia WangChang ZhouLiu-Jun YangGuan WangDong-Yun ChenJing-Hui HeJian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759

    2. [2]

      Mengxing LiuJing LiuHongxing ZhangJianan TaoPeiwen FanXin LvWei Guo . One-pot accessing of meso–aryl heptamethine indocyanine NIR fluorophores and potential application in developing dye-antibody conjugate for imaging tumor. Chinese Chemical Letters, 2025, 36(4): 109994-. doi: 10.1016/j.cclet.2024.109994

    3. [3]

      Chun-Ying XuXiao-Lin LuanYuan-Yuan CuiCheng-Xiong Yang . One-pot in situ doping synthesis of phenylboronic acid-functionalized magnetic-cyclodextrin microporous organic network for specific enrichment and detection of sulfonylurea herbicides. Chinese Chemical Letters, 2025, 36(9): 110937-. doi: 10.1016/j.cclet.2025.110937

    4. [4]

      Chengyao ZhaoJingyuan LiaoYuxiang ZhuYiying ZhangLianjie ZhaiJunrong HuangHengzhi You . Polystyrene-supported phosphoric-acid catalyzed atroposelective construction of axially chiral N-aryl benzimidazoles. Chinese Chemical Letters, 2025, 36(6): 110337-. doi: 10.1016/j.cclet.2024.110337

    5. [5]

      Ren ShenYanmei FangChunxiao YangQuande WeiPui-In MakRui P. MartinsYanwei Jia . UV-assisted ratiometric fluorescence sensor for one-pot visual detection of Salmonella. Chinese Chemical Letters, 2025, 36(4): 110143-. doi: 10.1016/j.cclet.2024.110143

    6. [6]

      Min FuRuihan WangWenqiang LiuSen ZhouChunhong ZhongYaohao LiPan HeXin LiShiying ShangZhongping Tan . Improved one-pot protein synthesis enabled by a more precise assessment of peptide arylthioester reactivity. Chinese Chemical Letters, 2025, 36(7): 110542-. doi: 10.1016/j.cclet.2024.110542

    7. [7]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    8. [8]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    9. [9]

      Qinwen ZhengXin LiuLintao TianYi ZhouLibing LiaoGuocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771

    10. [10]

      Chunwei LeiJian LiBo XuYu XieYun LingJuhua LuoWei Zhang . Synthesis of Ni/MnO/C nano-microspheres with synergistic effects of dielectric and magnetic loss for efficient microwave absorption. Chinese Chemical Letters, 2025, 36(7): 110419-. doi: 10.1016/j.cclet.2024.110419

    11. [11]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    12. [12]

      Yuanjiao LiuXiaoyang ZhaoSongyao ZhangYi WangYutuo ZhengXinrui MiaoWenli Deng . Site-selection and recognition of aromatic carboxylic acid in response to coronene and pyridine derivative. Chinese Chemical Letters, 2024, 35(8): 109404-. doi: 10.1016/j.cclet.2023.109404

    13. [13]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    14. [14]

      Yingying YanWanhe JiaRui CaiChun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819

    15. [15]

      Hang Wang Qi Wang Chuan-De Wu . Continuous synthesis of ammonia. Chinese Journal of Structural Chemistry, 2025, 44(3): 100437-100437. doi: 10.1016/j.cjsc.2024.100437

    16. [16]

      Jiajun LuZhehui LiaoTongxiang CaoShifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842

    17. [17]

      Zhihua WangXiang-Zhao ZhuXinglei HeChen-Xu GongWang-Fu LiangWenfeng WangYuqi LinKe-Yin Ye . Deoxygenative hydrohalogenation of propargyl alcohols: Regio- and stereoselective synthesis of unsaturated distal dihalides. Chinese Chemical Letters, 2025, 36(12): 111067-. doi: 10.1016/j.cclet.2025.111067

    18. [18]

      Yixin SunKeke YuXiuchun GuoLanlan ZongZhonggui HeXiaohui Pu . Three-in-one reduction and acid-ignited micelles amplify antitumor efficacy via precise synergistic delivery of paclitaxel and naringenin. Chinese Chemical Letters, 2025, 36(6): 110393-. doi: 10.1016/j.cclet.2024.110393

    19. [19]

      Aonan WangJingwen DaiYiming GuoFanghua NingXiaoyu LiuSidra SubhanJiaqian QinShigang LuJin Yi . Imidazolium bromide based dual-functional redox mediator for the construction of dendrite-free Li-CO2 batteries. Chinese Chemical Letters, 2025, 36(7): 110186-. doi: 10.1016/j.cclet.2024.110186

    20. [20]

      Jingjing ZhangLan DingVadim PopkovKezhen Qi . Aqueous indium metal batteries. Chinese Chemical Letters, 2025, 36(2): 110407-. doi: 10.1016/j.cclet.2024.110407

Metrics
  • PDF Downloads(0)
  • Abstract views(1166)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return