Citation: Dan Liu, Yong-Min Guo, Yi Li, Bao-Zong Li. Characterization of single-handed, coiled, carbonaceous, tubular nanoribbons[J]. Chinese Chemical Letters, ;2014, 25(6): 879-882. doi: 10.1016/j.cclet.2014.01.039 shu

Characterization of single-handed, coiled, carbonaceous, tubular nanoribbons

  • Corresponding author: Bao-Zong Li, 
  • Received Date: 2 December 2013
    Available Online: 16 January 2014

    Fund Project: This work was supported by Natural Science Foundation of Jiangsu Province (No. BK2011354) (No. BK2011354) the Priority Academic Program Development of Jiangsu High Education Institutions (PAPD) (PAPD)

  • Left-handed, coiled, 4,4'-biphenylene bridged polybissilsesquioxane, tubular nanoribbons were prepared according to the published literature. After carbonization and removal of silica using HF aqueous solution, left-handed, coiled, carbonaceous, tubular nanoribbons were obtained. The lefthanded, coiled, carbonaceous, tubular nanoribbons were characterized using field-emission scanning electron microscopy, transmission electron microscopy, powder X-ray diffraction, Raman spectrophotometer, diffuse reflectance circular dichroism (DRCD), and N2 adsorptions. Micropores were formed due to the removal of silica. The nitrogen BET surface area is 1727 m2/g. A broad, positive DRCD signal, identified at 40'-800 nm, indicates the carbonaceous, tubular nanoribbons exhibit optical activity. The helical pitch is proposed to play an important role in the position of the DRCD signal.
  • 加载中
    1. [1]

      [1] R. Ryoo, S.H. Joo, S. Jun, Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation, J. Phys. Chem. B 103 (1999) 7743-7746.

    2. [2]

      [2] Y. Meng, D. Gu, F.Q. Zhang, et al., Ordered mesoporous polymers and homologous carbon frameworks: amphiphilic surfactant templating and direct transformation, Angew. Chem. Int. Ed. 44 (2005) 7053-7059.

    3. [3]

      [3] Y. Fang, Y.Y. Lü, R.C. Che, et al., Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: synthesis and efficient lithium ion storage, J. Am. Chem. Soc. 135 (2013) 1524-1530.

    4. [4]

      [4] Y. Fang, D. Gu, Y. Zou, et al., A low-concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size, Angew. Chem. Int. Ed. 49 (2010) 7987-7991.

    5. [5]

      [5] Y.Y. Lü, F. Zhang, Y.Q. Dou, et al., A comprehensive study on KOH activation of ordered mesoporous carbons and their supercapacitor application, J. Mater. Chem. 22 (2012) 93-99.

    6. [6]

      [6] Y.P. Zhai, Y.Q. Dou, D.Y. Zhao, et al., Carbon materials for chemical capacitive energy storage, Adv. Mater. 23 (2011) 4828-4850.

    7. [7]

      [7] C.Z. Yu, J. Fan, B.Z. Tian, D.Y. Zhao, G.D. Stucky, High-yield synthesis of periodic mesoporous silica rods and their replication to mesoporous carbon rods, Adv. Mater. 14 (2002) 1742-1745.

    8. [8]

      [8] W. Yang, W.J. Sun, W. Chu, C.F. Jiang, J. Wen, Synthesis of carbon nanotubes using scrap tyre rubber as carbon source, Chin. Chem. Lett. 23 (2012) 363-366.

    9. [9]

      [9] S.H. Liu, Y.Y. Duan, X.J. Feng, J. Yang, S.A. Che, Synthesis of enantiopure carbonaceous nanotubes with optical activity, Angew. Chem. Int. Ed. 52 (2013) 6858-6862.

    10. [10]

      [10] S. Motojima, S. Hoshiya, Y. Hishikawa, Electromagnetic wave absorption properties of carbon microcoils/PMMA composite beads in W bands, Carbon 41 (2003) 2658-2660.

    11. [11]

      [11] Y. Qin, Z.K. Zhang, Z.L. Cui, Helical carbon nanofibers prepared by pyrolysis of acetylene with a catalyst derived from the decomposition of copper tartrate, Carbon 41 (2003) 3072-3074.

    12. [12]

      [12] Y. Qin, Z.K. Zhang, Z.L. Cui, Helical carbon nanofibers with a symmetric growth mode, Carbon 42 (2004) 1917-1922.

    13. [13]

      [13] Y. Qin, L.Y. Yu, Y. Wang, G.C. Li, Z.L. Cui, Amorphous helical carbon nanofibers synthesized at low temperature and their elasticity and processablity, Solid. State. Commun. 138 (2006) 5-8.

    14. [14]

      [14] X.Q. Chen, S.M. Yang, S.J. Motojima, M. Ichihara, Morphology and microstructure of twisting nano-ribbons prepared using sputter-coated Fe-base alloy catalysts on glass substrates, Mater. Lett. 59 (2005) 854-858.

    15. [15]

      [15] C.Y. Zhang, Y. Li, B.Z. Li, Y.G. Yang, Preparation of single-handed helical carbon/silica and carbonaceous nanotubes by using 4,40-biphenylene-bridged polybissilsesquioxane, Chem. Asian J. 8 (2013) 2714-2720.

    16. [16]

      [16] J.J.E. Moreau, L. Velutini, M.W.C. Man, C. Bied, New hybrid organic-inorganic solids with helical morphology via H-bond mediated sol-gel hydrolysis of silyl derivatives of chiral (R,R)-or (S,S)-diureidocyclohexane, J. Am. Chem. Soc. 123 (2001) 1509-1510.

    17. [17]

      [17] X.J. Wu, S.J. Ji, Y. Li, et al., Helical transfer through nonlocal interactions, J. Am. Chem. Soc. 131 (2009) 5986-5993.

    18. [18]

      [18] B.Z. Li, Z. Xu, W. Zhuang, et al., Characterization of 4,40-biphenylene-silicas and a chiral sensor for silicas, Chem. Commun. 47 (2011) 11495-11497.

    19. [19]

      [19] A. Brethon, J.J.E. Moreau, M.W.C. Man, Chiral hybrid silica sol-gel heterogenisation of trans-(1R, 2S)-diaminocyclohexane ligands for the rhodium catalysed enantioselective reduction of acetophenone, Tetrahedron: Asymmetry 15 (2004) 495-502.

    20. [20]

      [20] H.T. Li, B.Z. Li, Y.L. Chen, et al., Preparetion of chiral 4,40-biphenylene-silica nanoribbons, Chin. J. Chem. 27 (2009) 1860-1862.

    21. [21]

      [21] Z.W. Wu, J.B. Pang, Y.F. Lu, Synthesis of highly-ordered mesoporous carbon/silica nanocomposites and derivative hierarchically mesoporous carbon from a phenylbridged organosiloxane, Nanoscale 1 (2009) 245-249.

    22. [22]

      [22] M.P. Kapoor, Q.H. Yang, S.J. Inagaki, Self-assembly of biphenylene-bridged hybrid mesoporous solid with molecular-scale periodicity in the pore walls, J. Am. Chem. Soc. 124 (2002) 15176-15177.

    23. [23]

      [23] J.J. Xie, H.B. Qiu, S.A. Che, Handedness inversion of chiral amphiphilic molecular assemblies evidenced by supramolecular chiral imprinting in mesoporous silica assemblies, Chem. Eur. J. 18 (2012) 2559-2564.

  • 加载中
    1. [1]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    2. [2]

      Bohan ChenLiming GongJing FengMingji JinLiqing ChenZhonggao GaoWei Huang . Research advances of nanoparticles for CAR-T therapy in solid tumors. Chinese Chemical Letters, 2024, 35(9): 109432-. doi: 10.1016/j.cclet.2023.109432

    3. [3]

      Wei SuXiaoyan LuoPeiyuan LiYing ZhangChenxiang LinKang WangJianzhuang Jiang . Phthalocyanine self-assembled nanoparticles for type Ⅰ photodynamic antibacterial therapy. Chinese Chemical Letters, 2024, 35(12): 109522-. doi: 10.1016/j.cclet.2024.109522

    4. [4]

      Yiran TaoChunlei DaiZhaoxiang XieXinru YouKaiwen LiJun WuHai Huang . Redox responsive polymeric nanoparticles enhance the efficacy of cyclin dependent kinase 7 inhibitor for enhanced treatment of prostate cancer. Chinese Chemical Letters, 2024, 35(8): 109170-. doi: 10.1016/j.cclet.2023.109170

    5. [5]

      Yihao ZhangYang JiaoXianchao JiaQiaojia GuoChunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748

    6. [6]

      Yixin ZhangTing WangJixiang ZhangPengyu LuNeng ShiLiqiang ZhangWeiran ZhuNongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619

    7. [7]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    8. [8]

      Yujie LiYa-Nan WangYin-Gen LuoHongcai YangJinrui RenXiao Li . Advances in synthetic biology-based drug delivery systems for disease treatment. Chinese Chemical Letters, 2024, 35(11): 109576-. doi: 10.1016/j.cclet.2024.109576

    9. [9]

      Fereshte Hassanzadeh-AfruziMina AziziIman ZareEhsan Nazarzadeh ZareAnwarul HasanSiavash IravaniPooyan MakvandiYi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564

    10. [10]

      Shenglan ZhouHaijian LiHongyi GaoAng LiTian LiShanshan ChengJingjing WangJitti KasemchainanJianhua YiFengqi ZhaoWengang Qu . Recent advances in metal-loaded MOFs photocatalysts: From single atom, cluster to nanoparticle. Chinese Chemical Letters, 2025, 36(1): 110142-. doi: 10.1016/j.cclet.2024.110142

    11. [11]

      Jiaxu WangJinxie ZhangXiuping WangJingying WangLina ChenJiahui CaoWei CaoSiyu LiangPing LuanKe ZhengXiao-Kun OuyangLi GaoXiaowen OuFan ZhangMeitong OuLin Mei . CaCO3-coated hollow mesoporous silica nanoparticles for pH-responsive fungicides release. Chinese Chemical Letters, 2024, 35(12): 109697-. doi: 10.1016/j.cclet.2024.109697

    12. [12]

      Tianyi YangFangxi SuDehuan ShiShenghong ZhongYalin GuoZhaohui LiuJianfeng Huang . Efficient propane dehydrogenation catalyzed by Ru nanoparticles anchored on a porous nitrogen-doped carbon matrix. Chinese Chemical Letters, 2025, 36(2): 110444-. doi: 10.1016/j.cclet.2024.110444

    13. [13]

      Xingxing JiangYuxin ZhaoYan KongJianju SunShangzhao FengXin LuQi HuHengpan YangChuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555

    14. [14]

      Zhong-Hui SunYu-Qi ZhangZhen-Yi GuDong-Yang QuHong-Yu GuanXing-Long Wu . CoPSe nanoparticles confined in nitrogen-doped dual carbon network towards high-performance lithium/potassium ion batteries. Chinese Chemical Letters, 2025, 36(1): 109590-. doi: 10.1016/j.cclet.2024.109590

    15. [15]

      Xingqun PuRongrong LiuYuting XieChenjing YangJingyi ChenBaoling GuoChun-Xia ZhaoPeng ZhaoJian RuanFangfu YeDavid A WeitzDong Chen . One-step preparation of biocompatible amphiphilic dimer nanoparticles with tunable particle morphology and surface property for interface stabilization and drug delivery. Chinese Chemical Letters, 2025, 36(3): 109820-. doi: 10.1016/j.cclet.2024.109820

    16. [16]

      Yin-Hang Chai Li-Long Dang . New structural breakthrough and topological transformation of homogeneous metalla[4]catenane compounds. Chinese Journal of Structural Chemistry, 2024, 43(10): 100322-100322. doi: 10.1016/j.cjsc.2024.100322

    17. [17]

      Yinghui Xia Yixi Lin Zhenming Xu . Cation potential guiding structural regulation of lithium halide superionic conductors. Chinese Journal of Structural Chemistry, 2025, 44(3): 100448-100448. doi: 10.1016/j.cjsc.2024.100448

    18. [18]

      Bharathi Natarajan Palanisamy Kannan Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349

    19. [19]

      Zhi LiWenpei LiShaoping JiangChuan HuYuanyu HuangMaxim ShevtsovHuile GaoShaobo Ruan . Legumain-triggered aggregable gold nanoparticles for enhanced intratumoral retention. Chinese Chemical Letters, 2024, 35(7): 109150-. doi: 10.1016/j.cclet.2023.109150

    20. [20]

      Feng CuiFangman ChenXiaochun XieChenyang GuoKai XiaoZiping WuYinglu ChenJunna LuFeixia RuanChuanxu ChengChao YangDan Shao . Scalable production of mesoporous titanium nanoparticles through sequential flash nanocomplexation. Chinese Chemical Letters, 2024, 35(4): 108681-. doi: 10.1016/j.cclet.2023.108681

Metrics
  • PDF Downloads(0)
  • Abstract views(652)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return