Citation:
Bing Yu, Hua Yuan, Yi-Ying Yang, Hai-Lin Cong, Tian-Zi Hao, Xiao-Dan Xu, Xiu-Lan Zhang, Shu-Jing Yang, Li-Xin Zhang. Detection of dopamine using self-assembled diazoresin/single-walled carbon nanotube modified electrodes[J]. Chinese Chemical Letters,
;2014, 25(4): 523-528.
doi:
10.1016/j.cclet.2014.01.029
-
Ultrathin films of diazoresin (DR)/single-walled carbon nanotube (SWNT) were fabricated on thioglycollic acid (TGA) decorated gold (Au) electrodes by the self-assembly method combined with the photocrosslinking technique. The electrochemical behavior of dopamine (DA) at the DR/SWNT modified electrodes was studied using the cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods. Under the optimal conditions, a linear CV response to DA concentration from 1 μmol/L to 40 μmol/L was observed, and the detection limit of DA was 2.1×10-3 μmol/L via the DPV method in the presence of 10 μmol/L of uric acid (UA) or 2.5×10-3 μmol/L via the DPV method in the presence of 10 μmol/L of ascorbic acid (AA). Moreover, the modified electrodes exhibited good reproducibility and sensitivity, demonstrating its feasibility for analytical purposes.
-
-
-
[1]
[1] R.M. Wightman, L.J. May, A.C. Michael, Detection of dopamine dynamics in the brain, Anal. Chem. 60 (1988) 769A-779A.
-
[2]
[2] D. Han, T. Han, C. Shan, A. Ivaska, L. Niu, Simultaneous determination of ascorbic acid, dopamine and uric acid with chitosan-graphene modified electrode, Electroanalysis 22 (2010) 2001-2008.
-
[3]
[3] P. Damier, E.C. Hirsch, Y. Aqid, A.M. Graybiel, The substantia nigra of the human brain. Ⅱ. Patterns of loss of dopamine-containing neurons in Parkinson's disease, Brain 122 (1999) 1437-1448.
-
[4]
[4] U. Chandra, B.E.K. Swamy, O. Gilbert, et al., Poly(amaranth) film based sensor for resolution of dopamine in the presence of uric acid: a voltammetric study, Chin. Chem. Lett. 21 (2010) 1490-1492.
-
[5]
[5] W. Song, Y. Chen, J. Xu, D.B. Tian, A selective voltammetric detection for dopamine usingpoly(gallic acid) filmmodified electrode, Chin.Chem. Lett.21 (2010) 349-352.
-
[6]
[6] A.E. Poliakov, A.V. Dumshakova, S.V. Muginova, T.N. Shekhovtsova, A peroxidasebased method for the determination of dopamine, adrenaline, and a-methyldopa in the presence of thyroid hormones in pharmaceutical forms, Talanta 84 (2011) 710-716.
-
[7]
[7] S. Liu, J. Yan, G. He, et al., Layer-by-layer assembled multilayer films of reduced graphene oxide/gold nanoparticles for the electrochemical detection of dopamine, J. Electroanal. Chem. 672 (2012) 40-44.
-
[8]
[8] Z.H. Sheng, X.Q. Zheng, J.Y. Xu, et al., Electrochemical sensor based on nitrogen doped graphene: simultaneous determination of ascorbic acid, dopamine and uric acid, Biosens. Bioelectron. 34 (2012) 125-131.
-
[9]
[9] E. Farjami, R. Campos, J.S. Nielsen, et al., RNA aptamer-based electrochemical biosensor for selective and label-free analysis of dopamine, Anal. Chem. 85 (2013) 121-128.
-
[10]
[10] B. Kong, A. Zhu, Y. Luo, et al., Sensitive and selective colorimetric visualization of cerebral dopamine based on double molecular recognition, Angew. Chem. Int. Ed. 50 (2011) 1837-1840.
-
[11]
[11] H. Su, B. Sun, L. Chen, Z. Xu, S. Ai, Colorimetric sensing of dopamine based on the aggregation of gold nanoparticles induced by copper ions, Anal. Methods 4 (2012) 3981-3986.
-
[12]
[12] J.M. Liu, X.X. Wang, M.L. Cui, et al., A promising non-aggregation colorimetric sensor of AuNRs-Ag+ for determination of dopamine, Sens. Actuators B 176 (2013) 97-102.
-
[13]
[13] J.J. Feng, H. Guo, Y.F. Li, et al., Single molecular functionalized gold nanoparticles for hydrogen-bonding recognition and colorimetric detection of dopamine with high sensitivity and selectivity, ACS Appl. Mater. Interfaces 5 (2013) 1226-1231.
-
[14]
[14] S.S. Li, H.L. Wu, Y.J. Liu, H.W. Gu, R.Q. Yu, Simultaneous determination of tyrosine and dopamine in urine samples using excitation-emission matrix fluorescence coupled with second-order calibration, Chin. Chem. Lett. 24 (2013) 239-242.
-
[15]
[15] A. El-Beqqali, A. Kussak, M. Abdel-Rehim, Determination of dopamine and serotonine in human urine samples utilizing microextraction online with liquid chromatography/electrospray tandem mass spectrometry, J. Sep. Sci. 30 (2007) 421-424.
-
[16]
[16] P.S. Rao, N. Rujikarn, J.M. Luber Jr., D.H. Tyras, A specific sensitive HPLC method for determination of plasma dopamine, Chromatographia 28 (1989) 307-310.
-
[17]
[17] J. Cho, K. Char, J.D. Hong, K.B. Lee, Fabrication of highly ordered multilayer films using a spin self-assembly method, Adv. Mater. 13 (2001) 1076-1078.
-
[18]
[18] M. Grzelczak, J. Vermant, E.M. Furst, L.M. Liz-Marzan, Directed self-assembly of nanoparticles, ACS Nano 4 (2010) 3591-3605.
-
[19]
[19] R. Deng, S. Liu, J. Li, et al., Mesoporous block copolymer nanoparticles with tailored structures by hydrogen-bonding-assisted self-assembly, Adv. Mater. 24 (2012) 1889-1983.
-
[20]
[20] H. Cong, J. Chen, W. Cao, Covalently attached sandwich structure from colloidal particles and diazoresin, J. Colloid Interface Sci. 263 (2003) 665-668.
-
[21]
[21] B. Yu, H.L. Cong, H.W. Liu, et al., Fabrication and characterization of stable ultrathin film micropatterns containing DNA and photosensitive polymer diazoresin, Anal. Bioanal. Chem. 384 (2006) 385-390.
-
[22]
[22] F. Pompeo, D.E. Resasco, Water solubilization of single-walled carbon nanotubes by functionalization with glucosamine, Nano Lett. 2 (2002) 369-373.
-
[23]
[23] B. Yu, W. Cui, H. Cong, et al., A novel diazoresin/polyethylene glycol covalent capillary coating for analysis of proteins by capillary electrophoresis, RSC Adv. 3 (2013) 20010-20015.
-
[24]
[24] B. Yu, X.M. Liu, H.L. Cong, Z.H. Wang, J.G. Tang, Fabrication of stable ultrathin transparent conductive graphene micropatterns using layer by layer self-assembly, Sci. Adv. Mater. 5 (2013) 1533-1538.
-
[1]
-
-
-
[1]
Chenghao Liu , Xiaofeng Lin , Jing Liao , Min Yang , Min Jiang , Yue Huang , Zhizhi Du , Lina Chen , Sanjun Fan , Qitong Huang . Carbon dots-based dopamine sensors: Recent advances and challenges. Chinese Chemical Letters, 2024, 35(12): 109598-. doi: 10.1016/j.cclet.2024.109598
-
[2]
Caixia Zhu , Qing Hong , Kaiyuan Wang , Yanfei Shen , Songqin Liu , Yuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560
-
[3]
Xilin Bai , Wei Deng , Jingjuan Wang , Ming Zhou . Enrichment-enhanced detection strategy in the optimized monitoring system of dopamine with carbon dots-based probe. Chinese Chemical Letters, 2025, 36(2): 109959-. doi: 10.1016/j.cclet.2024.109959
-
[4]
Yuanpeng Ye , Longfei Yao , Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460
-
[5]
Sifan Du , Yuan Wang , Fulin Wang , Tianyu Wang , Li Zhang , Minghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256
-
[6]
Xue Zhao , Mengshan Chen , Dan Wang , Haoran Zhang , Guangzhi Hu , Yingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327
-
[7]
Feng Cao , Chunxiang Xian , Tianqi Yang , Yue Zhang , Haifeng Chen , Xinping He , Xukun Qian , Shenghui Shen , Yang Xia , Wenkui Zhang , Xinhui Xia . Gelation-pyrolysis strategy for fabrication of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110575-. doi: 10.1016/j.cclet.2024.110575
-
[8]
Yuwen Zhu , Xiang Deng , Yan Wu , Baode Shen , Lingyu Hang , Yuye Xue , Hailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733
-
[9]
Jingqi Xin , Shupeng Han , Meichen Zheng , Chenfeng Xu , Zhongxi Huang , Bin Wang , Changmin Yu , Feifei An , Yu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165
-
[10]
Keyang Li , Yanan Wang , Yatao Xu , Guohua Shi , Sixian Wei , Xue Zhang , Baomei Zhang , Qiang Jia , Huanhua Xu , Liangmin Yu , Jun Wu , Zhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511
-
[11]
Xuanyu Wang , Zhao Gao , Wei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757
-
[12]
Xian Yan , Huawei Xie , Gao Wu , Fang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279
-
[13]
Cen Zhou , Biqiong Hong , Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086
-
[14]
Zhenzhu Wang , Chenglong Liu , Yunpeng Ge , Wencan Li , Chenyang Zhang , Bing Yang , Shizhong Mao , Zeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127
-
[15]
Cheng-Yan Wu , Yi-Nan Gao , Zi-Han Zhang , Rui Liu , Quan Tang , Zhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649
-
[16]
Changlin Su , Wensheng Cai , Xueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095
-
[17]
Xiaofei NIU , Ke WANG , Fengyan SONG , Shuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057
-
[18]
Zengchao Guo , Weiwei Liu , Tengfei Liu , Jinpeng Wang , Hui Jiang , Xiaohui Liu , Yossi Weizmann , Xuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060
-
[19]
Jin Tong , Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113
-
[20]
Ruoxi Sun , Yiqian Xu , Shaoru Rong , Chunmiao Han , Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(631)
- HTML views(17)