Citation:
Yuan-Yuan Yao, Long Zhang, Zi-Fei Wang, Jing-Kun Xu, Yang-Ping Wen. Electrochemical determination of quercetin by self-assembled platinum nanoparticles/poly(hydroxymethylated-3,4-ethylenedioxylthiophene) nanocomposite modified glassy carbon electrode[J]. Chinese Chemical Letters,
;2014, 25(4): 505-510.
doi:
10.1016/j.cclet.2014.01.028
-
A simple and sensitive platinum nanoparticles/poly(hydroxymethylated-3,4-ethylenedioxylthiophene) nanocomposite (PtNPs/PEDOT-MeOH) modified glassy carbon electrode (GCE) was successfully developed for the electrochemical determination of quercetin. Scanning electron microscopy and energy dispersive X-ray spectroscopy results indicated that the PtNPs were inserted into the PEDOTMeOH layer. Compared with the bare GCE and poly(3,4-ethylenedioxythiophene) (PEDOT) electrodes, the PtNPs/PEDOT-MeOH/GCE modified electrode exhibited a higher electrocatalytic ability toward the oxidation of quercetin due to the synergic effects of the electrocatalytic activity and strong adsorption ability of PtNPs together with the good water solubility and high conductivity of PEDOT-MeOH. The electrochemical sensor can be applied to the quantification of quercetin with a linear range covering 0.04-91 μmol L-1 and a low detection limit of 5.2 nmol L-1. Furthermore, the modified electrode also exhibited good reproducibility and long-term stability, as well as high selectivity.
-
-
-
[1]
[1] N.C. Cook, S. Samman, Flavonoids - chemistry, metabolism, cardioprotective effects, and dietary sources, J. Nutr. Biochem. 7 (1996) 66-76.
-
[2]
[2] A.K. Verma, J.A. Johnson, M.N. Gould, M.A. Tanner, Inhibition of 7,12-dimethylbenz(a)anthracene- and N-nitrosomethylurea-induced rat mammary cancer by dietary flavonol quercetin, Cancer Res. 48 (1988) 5754-5758.
-
[3]
[3] P. Xiao, F.O. Zhao, B.Z. Zeng, Voltammetric determination of quercetin at a multiwalled carbon nanotubes paste electrode, Michrochim. J. 85 (2007) 244-249.
-
[4]
[4] E. Ranjbari, P. Biparva, M.R. Hadjmohammadi, Utilization of inverted dispersive liquid-liquid microextraction followed by HPLC-UV as a sensitive and efficient method for the extraction and determination of quercetin in honey and biological samples, Talanta 89 (2012) 117-123.
-
[5]
[5] D.G. Watson, E.J. Oliveira, Solid-phase extraction and gas chromatography-mass spectrometry determination of kaempferol and quercetin in human urine after consumption of Ginkgo biloba tablets, J. Chromatogr. B 723 (1999) 203-210.
-
[6]
[6] K. Ishii, T. Furuta, Y. Kasuya, High-performance liquid chromatographic determination of quercetin in human plasma and urine utilizing solid-phase extraction and ultraviolet detection, J. Chromatogr. B 794 (2003) 49-56.
-
[7]
[7] A. Molinelli, R. Weiss, B. Mizaikoff, Advanced solid phase extraction using molecularly imprinted polymers for the determination of quercetin in red wine, J. Agric. Food Chem. 50 (2002) 1804 1808.
-
[8]
[8] X.Q. Lin, J.B. He, Z.G. Zha, Simultaneous determination of quercetin and rutin at a multi-wall carbon-nanotube paste electrodes by reversing differential pulse voltammetry, Sens. Actuators B 119 (2006) 608-614.
-
[9]
[9] J.B. He, X.Q. Lin, J. Pan, Multi-wall carbon nanotube paste electrode for adsorptive stripping determination of quercetin: a comparison with graphite paste electrode via voltammetry and chronopotentiometry, Electroanalysis 17 (2005) 1681- 1686.
-
[10]
[10] G.P. Jin, J.B. He, Z.B. Rui, F.S. Meng, Electrochemical behavior and adsorptive stripping voltammetric determination of quercetin at multi-wall carbon nanotubes- modified paraffin-impregnated graphite disk electrode, Electrochim. Acta 51 (2006) 4341-4346.
-
[11]
[11] A.C. Oliveira, L.H. Mascaro, Evaluation of carbon nanotube paste electrode modified with copper microparticles and its application to determination of quercetin, Int. J. Electrochem. Sci. 6 (2011) 804-818.
-
[12]
[12] M.S. Tehrani, A. Pourhabib, S.W. Husanin, M. Arvand, Electrochemical behavior and voltammetric determination of quercetin in foods by graphene nanosheets modified electrode, Anal. Bioanal. Electrochem. 5 (2013) 1-18.
-
[13]
[13] S. Hrapovic, Y.L. Liu, K.B. Male, Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes, Anal. Chem. 76 (2004) 1083-1088.
-
[14]
[14] S.J. Guo, D. Wen, Y.M. Zhai, S.J. Dong, E. Wang, Platinum nanoparticle ensembleon- graphene hybrid nanosheet: one-pot, rapid synthesis, and used as new electrode material for electrochemical sensing, ACS Nano 4 (2010) 3959-3968.
-
[15]
[15] D.W. Hatchett, M. Josowicz, Composites of intrinsically conducting polymers as sensing nanomaterials, Chem. Rev. 108 (2008) 746-769.
-
[16]
[16] Rajesh, T. Ahuja, D. Kumar, Recent progress in the development of nano-structured conducting polymers/nanocomposites for sensor applications, Sens. Actuators B 136 (2009) 275-286.
-
[17]
[17] C. Li, H. Bai, G.Q. Shi, Conducting polymer nanomaterials: electrosynthesis and applications, Chem. Soc. Rev. 38 (2009) 2397-2409.
-
[18]
[18] B.T. Li, L.M. Tang, K. Chen, et al., Coordinated organogel templated fabrication of silver/polypyrrole composite nanowires, Chin. Chem. Lett. 22 (2011) 123-126.
-
[19]
[19] L.R. Wang, F. Ran, Y.T. Tan, et al., Coral reef-like polyanaline nanotubes prepared by a reactive template of manganese oxide for supercapacitor electrode, Chin. Chem. Lett. 22 (2011) 964-968.
-
[20]
[20] E. Poverenov, M. Li, A. Bitler, M. Bendikov, Major effect of electropolymerization solvent on morphology and electrochromic properties of PEDOT films, Chem. Mater. 22 (2010) 4019-4025.
-
[21]
[21] J. Jang, M. Chang, H. Yoon, Chemical sensors based on highly conductive poly(3,4- ethylenedioxythiophene) nanorods, Adv. Mater. 17 (2005) 1616-1620.
-
[22]
[22] L. Groenendaal, G. Zotti, F. Jonas, et al., Electrochemistry of poly(3,4-ethylenedioxythiophene) derivatives, Adv. Mater. 15 (2003) 855-879.
-
[23]
[23] A. Elschner, S. Kirchmeyer, W. Lövenich, U. Merker, K. Reuter, PEDOT: Principles and Applications of an Intrinsically Conductive Polymer, vol. 10, CRC Press/Taylor & Francis Group, Boca Raton/London/New York, 2011.
-
[24]
[24] Y.P. Wen, L.M. Lu, D. Li, et al., Ascorbate oxidase electrochemical biosensor based on the biocompatible poly(3,4-ethylenedioxythiophene) matrices for agricultural application in crops, Chin. Chem. Lett. 23 (2012) 221-224.
-
[25]
[25] A. Lima, P. Schottland, S. Sadki, C. Chevrot, Electropolymerization of 3,4-ethylenedioxythiophene and 3,4-ethylenedioxythiophene methanol in the presence of dodecylbenzenesulfonate, Synth. Met. 93 (1998) 33-41.
-
[26]
[26] Y.H. Xiao, X.Y. Cui, J.M. Hancock, et al., Electrochemical polymerization of poly(hydroxymethylated-3,4-ethylenedioxythiophene) (PEDOT-MeOH) on multichannel neural probes, Sens. Actuators B 99 (2004) 437-443.
-
[27]
[27] L.P. Wu, L.M. Lu, L. Zhang, et al., Electrochemical determination of the anticancer herbal drug shikonin at a nanostructured poly(hydroxymethylated-3,4-ethylenedioxythiophene) modified electrode, Electroanalysis 25 (2013) 2244-2250.
-
[28]
[28] Y.P. Wen, D. Li, Y. Lu, et al., Poly(3,4-ethylenedioxythiophene methanol)/ascorbate oxidase/nafion-single-walled carbon nanotubes biosensor for voltammetric detection of vitamin C, Chin. J. Polym. Sci. 30 (2012) 824-836.
-
[29]
[29] Y. Lu, Y.P. Wen, B.Y. Lu, et al., Electrosynthesis and characterization of poly(hydroxymethylated- 3,4-ethylenedioxythiophene) film in aqueous micellar solution and its biosensing application, Chin. J. Polym. Sci. 30 (2012) 824-836.
-
[30]
[30] A.M.O. Brett, M.E. Ghica, Electrochemical oxidation of quercetin, Electroanalysis 15 (2003) 1745-1750.
-
[31]
[31] G.R. Xu, S. Kim, Selective determination of quercetin using carbon nanotubemodified electrodes, Electroanalysis 18 (2006) 1786-1792.
-
[1]
-
-
-
[1]
Hongbo Zhang , Yihong Tang , Suxia Zhang , Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013
-
[2]
Rong Tian , Yadi Yang , Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064
-
[3]
Xinyi Hu , Riguang Zhang , Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157
-
[4]
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
-
[5]
Xinyu You , Xin Zhang , Shican Jiang , Yiru Ye , Lin Gu , Hexun Zhou , Pandong Ma , Jamal Ftouni , Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265
-
[6]
Ming Huang , Xiuju Cai , Yan Liu , Zhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323
-
[7]
Jinqiang Gao , Haifeng Yuan , Xinjuan Du , Feng Dong , Yu Zhou , Shengnan Na , Yanpeng Chen , Mingyu Hu , Mei Hong , Shihe Yang . Methanol steam mediated corrosion engineering towards high-entropy NiFe layered double hydroxide for ultra-stable oxygen evolution. Chinese Chemical Letters, 2025, 36(1): 110232-. doi: 10.1016/j.cclet.2024.110232
-
[8]
Kaili Wang , Pengcheng Liu , Mingzhe Wang , Tianran Wei , Jitao Lu , Xingling Zhao , Zaiyong Jiang , Zhimin Yuan , Xijun Liu , Jia He . Modulating d-d orbitals coupling in PtPdCu medium-entropy alloy aerogels to boost pH-general methanol electrooxidation performance. Chinese Chemical Letters, 2025, 36(4): 110532-. doi: 10.1016/j.cclet.2024.110532
-
[9]
Sanmei Wang , Dengxin Yan , Wenhua Zhang , Liangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611
-
[10]
Yizhe Chen , Yuzhou Jiao , Liangyu Sun , Cheng Yuan , Qian Shen , Peng Li , Shiming Zhang , Jiujun Zhang . Nonmetallic phosphorus alloying to regulate the oxygen reduction mechanisms of platinum catalyst. Chinese Chemical Letters, 2025, 36(4): 110789-. doi: 10.1016/j.cclet.2024.110789
-
[11]
Jiaxu Wang , Jinxie Zhang , Xiuping Wang , Jingying Wang , Lina Chen , Jiahui Cao , Wei Cao , Siyu Liang , Ping Luan , Ke Zheng , Xiao-Kun Ouyang , Li Gao , Xiaowen Ou , Fan Zhang , Meitong Ou , Lin Mei . CaCO3-coated hollow mesoporous silica nanoparticles for pH-responsive fungicides release. Chinese Chemical Letters, 2024, 35(12): 109697-. doi: 10.1016/j.cclet.2024.109697
-
[12]
He Yao , Wenhao Ji , Yi Feng , Chunbo Qian , Chengguang Yue , Yue Wang , Shouying Huang , Mei-Yan Wang , Xinbin Ma . Copper-catalyzed and biphosphine ligand controlled 3,4-boracarboxylation of 1,3-dienes with carbon dioxide. Chinese Chemical Letters, 2025, 36(4): 110076-. doi: 10.1016/j.cclet.2024.110076
-
[13]
Jisheng Liu , Junli Chen , Xifeng Zhang , Yin Wu , Xin Qi , Jie Wang , Xiang Gao . Red blood cell membrane-coated FLT3 inhibitor nanoparticles to enhance FLT3-ITD acute myeloid leukemia treatment. Chinese Chemical Letters, 2024, 35(9): 109779-. doi: 10.1016/j.cclet.2024.109779
-
[14]
Bingbing Shi , Yuchun Wang , Yi Zhou , Xing-Xing Zhao , Yizhou Li , Nuoqian Yan , Wen-Juan Qu , Qi Lin , Tai-Bao Wei . A supramolecular oligo[2]rotaxane constructed by orthogonal platinum(Ⅱ) metallacycle and pillar[5]arene-based host–guest interactions. Chinese Chemical Letters, 2024, 35(10): 109540-. doi: 10.1016/j.cclet.2024.109540
-
[15]
Pingping HAO , Fangfang LI , Yawen WANG , Houfen LI , Xiao ZHANG , Rui LI , Lei WANG , Jianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054
-
[16]
Hengying Xiang , Nanping Deng , Lu Gao , Wen Yu , Bowen Cheng , Weimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182
-
[17]
Gengchen Guo , Tianyu Zhao , Ruichang Sun , Mingzhe Song , Hongyu Liu , Sen Wang , Jingwen Li , Jingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198
-
[18]
Jun-Ming Cao , Kai-Yang Zhang , Jia-Lin Yang , Zhen-Yi Gu , Xing-Long Wu . Differential bonding behaviors of sodium/potassium-ion storage in sawdust waste carbon derivatives. Chinese Chemical Letters, 2024, 35(4): 109304-. doi: 10.1016/j.cclet.2023.109304
-
[19]
Bharathi Natarajan , Palanisamy Kannan , Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349
-
[20]
Zhi Li , Wenpei Li , Shaoping Jiang , Chuan Hu , Yuanyu Huang , Maxim Shevtsov , Huile Gao , Shaobo Ruan . Legumain-triggered aggregable gold nanoparticles for enhanced intratumoral retention. Chinese Chemical Letters, 2024, 35(7): 109150-. doi: 10.1016/j.cclet.2023.109150
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(678)
- HTML views(6)