Citation: Jia Zhao, Lei Ma, Xiao-Liang Xu, Feng Feng, Xiao-Nian Li. Synthesis of carbon-supported Pd/SnO2 catalyst for highly selective hydrogenation of 2,4-difluoronitrobenzene[J]. Chinese Chemical Letters, ;2014, 25(8): 1137-1140. doi: 10.1016/j.cclet.2014.01.024 shu

Synthesis of carbon-supported Pd/SnO2 catalyst for highly selective hydrogenation of 2,4-difluoronitrobenzene

  • Corresponding author: Xiao-Nian Li, 
  • Received Date: 22 October 2013
    Available Online: 31 December 2013

    Fund Project:

  • Halogenated anilines have a wide range of applications in the production of pharmaceuticals and agrochemical substances, and thus it is of great importance to develop highly active and selective catalysts for the hydrogenation of halogenated nitrobenzenes. We approach this challenge by probing noble metal/non-noble metal oxide nanoparticles (NPs) catalysts. Carbon-supported Pd/SnO2 catalysts were synthesized by the chemical reduction method, and their catalytic activity was evaluated by the hydrogenation reaction of 2,4-difluoronitrobenzene (DFNB) to the corresponding 2,4-difluoroaniline (DFAN), showing a remarkable synergistic effect of the Pd and SnO2 NPs. The as-prepared Pd/SnO2/C catalysts were characterized using TEM, XRD, H2 TPD and XPS techniques. Modifications to the electronic structure of the Pd atoms through the use of SnO2 led to the suppression of the hydrogenolysis of the C-F bond and the acceleration of nitrosobenzene (DFNSB) conversion and consequently, resulted in the inhibition of the formation of reactive by-products and may be responsible for the enhancements observed in selectivity.
  • 加载中
    1. [1]

      [1] R. Filler, Y. Kobayashi, L.M. Yagupolskii, Organofluorine Compounds in Medicinal Chemistry and Biomedical Applications, Elsevier, Amsterdam, 1993.

    2. [2]

      [2] R.E. Banks, B.E. Smart, J.C. Tatlow, Organofluorine Chemistry: Principles and Commercial Applications, Springer, New York, 1994.

    3. [3]

      [3] J.T. Welch, S. Eswarakrishnan, Flourine in Bioorganic Chemistry, Wiley, New York, 1991.

    4. [4]

      [4] A. Becker, Inventory of Industrial Fluoro-Biochemicals, Eyrolles, Paris, 1996.

    5. [5]

      [5] L. Červený, I. Paseka, V. Stuchlý, et al., Hydrogenation of aromatic nitro compounds on copper-modified platinum catalysts, Collect. Czech. Chem. Commun. 47 (1982) 853-857.

    6. [6]

      [6] R. Baltzly, A.P. Phillips, The catalytic hydrogenolysis of halogen compounds, J. Am. Chem. Soc. 68 (1946) 261-265.

    7. [7]

      [7] W. Dunworth, F. Nord, Investigations on the mechanism of catalytic hydrogenations. 1 XVII. Reductions with rhodium on activated carbon, J. Am. Chem. Soc. 74 (1952) 1459-1462.

    8. [8]

      [8] C.F. Winans, Nickel as a catalyst for the hydrogenation of aromatic halogen compounds, J. Am. Chem. Soc. 61 (1939) 3564-3565.

    9. [9]

      [9] A. Furst, R.C. Berlo, S. Hooton, Hydrazine as a reducing agent for organic compounds (catalytic hydrazine reductions), Chem. Rev. 65 (1965) 51-68.

    10. [10]

      [10] W.W. Lin, H.Y. Cheng, J. Ming, et al., Deactivation of Ni/TiO2 catalyst in the hydrogenation of nitrobenzene in water and improvement in its stability by coating a layer of hydrophobic carbon, J. Catal. 291 (2012) 149-154.

    11. [11]

      [11] R.A. Johnstone, A.H. Wilby, I.D. Entwistle, Heterogeneous catalytic transfer hydrogenation and its relation to other methods for reduction of organic compounds, Chem. Rev. 85 (1985) 129-170.

    12. [12]

      [12] G. Cordier, J.M. Grosselin, R.-M. Ferrero, High selectivities in hydrogenation of halogenonitro-benzenes on Pd, Pt or raney nickel as catalysts, Ind. Chem. Libr. 8 (1996) 336-342.

    13. [13]

      [13] M.H. Liu, W.Y. Yu, H.F. Liu, Selective hydrogenation of o-chloronitrobenzene over polymer-stabilized ruthenium colloidal catalysts, J. Mol. Catal. A: Chem. 138 (1999) 295-303.

    14. [14]

      [14] W.X. Tu, H.F. Liu, Y. Tang, The metal complex effect on the selective hydrogenation of m-and p-chloronitrobenzene over PVP-stabilized platinum colloidal catalysts, J. Mol. Catal. A: Chem. 159 (2000) 115-120.

    15. [15]

      [15] J. Zhang, Y. Wang, H. Ji, et al., Magnetic nanocomposite catalysts with high activity and selectivity for selective hydrogenation of ortho-chloronitrobenzene, J. Catal. 229 (2005) 114-118.

    16. [16]

      [16] X.X. Han, R.X. Zhou, X.X. Zheng, et al., Effect of rare earths on the hydrogenation properties of p-chloronitrobenzene over polymer-anchored platinum catalysts, J. Mol. Catal. A: Chem. 193 (2003) 103-108.

    17. [17]

      [17] X.X. Han, R.X. Zhou, G.M. Lai, et al., Effect of transition metal (Cr, Mn, Fe, Co, Ni and Cu) on the hydrogenation properties of chloronitrobenzene over Pt/TiO2 catalysts, J. Mol. Catal. A: Chem. 209 (2004) 83-87.

    18. [18]

      [18] C. Su, X.N. Li, Q.F. Zhang, et al., Behavior of adsorbed diphenyl-sulfide on the Pd/C catalyst for o-chloronitrobenzene hydrogenation, Chin. Chem. Lett. 24 (2013) 59-62.

    19. [19]

      [19] B. Coq, A. Tijani, F. Figuéras, Influence of alloying platinum for the hydrogenation of p-chloronitrobenzene over PtM/Al2O3 catalysts with M=Sn, Pb, Ge, Al, Zn, J. Mol. Catal. 71 (1992) 317-333.

    20. [20]

      [20] B. Coq, A. Tijani, R. Dutartre, et al., Influence of support and metallic precursor on the hydrogenation of p-chloronitrobenzene over supported platinum catalysts, J. Mol. Catal. 79 (1993) 253-264.

    21. [21]

      [21] B. Zuo, Y. Wang, Q. Wang, et al., An efficient ruthenium catalyst for selective hydrogenation of ortho-chloronitrobenzene prepared via assembling ruthenium and tin oxide nanoparticles, J. Catal. 222 (2004) 493-498.

    22. [22]

      [22] D. Kashchiev, G. Van Rosmalen, Review: nucleation in solutions revisited, Cryst. Res. Technol. 38 (2003) 555-574.

    23. [23]

      [23] Y.X. Liu, J.X. Chen, J.Y. Zhang, Effects of the supports on activity of supported nickel catalysts for hydrogenation of m-dinitrobenzene to m-phenylenediamine, Chin. J. Chem. Eng. 15 (2007) 63-67.

    24. [24]

      [24] E. Esmaeili, Y. Mortazavi, A.A. Khodadadi, A.M. Rashidi, M. Rashidzadeh, The role of tin-promoted Pd/MWNTs via the management of carbonaceous species in selective hydrogenation of high concentration acetylene, Appl. Surf. Sci. 263 (2012) 513-522.

    25. [25]

      [25] M. Studer, S. Neto, H.U. Blaser, Modulating the hydroxylamine accumulation in the hydrogenation of substituted nitroarenes using vanadium-promoted RNi catalysts, Top. Catal. 13 (2000) 205-212.

    26. [26]

      [26] F. Cárdenas-Lizana, S. Gómez-Quero, M.A. Keane, Clean production of chloroanilines by selective gas phase hydrogenation over supported Ni catalysts, Appl. Catal. A 334 (2008) 199-206.

    27. [27]

      [27] X. Meng, H. Cheng, Y. Akiyama, et al., Selective hydrogenation of nitrobenzene to aniline in dense phase carbon dioxide over Ni/g-Al2O3: significance of molecular interactions, J. Catal. 264 (2009) 1-10.

    28. [28]

      [28] X. Meng, H. Cheng, S.I. Fujita, et al., Selective hydrogenation of chloronitrobenzene to chloroaniline in supercritical carbon dioxide over Ni/TiO2: significance of molecular interactions, J. Catal. 269 (2010) 131-139.

    29. [29]

      [29] F.Y. Zhao, Y. Ikushima, M. Arai, Hydrogenation of nitrobenzene with supported platinum catalysts in supercritical carbon dioxide: effects of pressure, solvent, and metal particle size, J. Catal. 224 (2004) 479-483.

    30. [30]

      [30] D. Amalric-Popescu, F. Bozon-Verduraz, Infrared studies on SnO2 and Pd/SnO2, Catal. Today 70 (2001) 139-154.

  • 加载中
    1. [1]

      Jinyuan Cui Tingting Yang Teng Xu Jin Lin Kunlong Liu Pengxin Liu . Hydrogen spillover enhances the selective hydrogenation of α,β-unsaturated aldehydes on the Cu-O-Ce interface. Chinese Journal of Structural Chemistry, 2025, 44(1): 100438-100438. doi: 10.1016/j.cjsc.2024.100438

    2. [2]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    3. [3]

      Xiaohui FuYanping ZhangJuan LiaoZhen-Hua WangYong YouJian-Qiang ZhaoMingqiang ZhouWei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688

    4. [4]

      Sikai Wu Xuefei Wang Huogen Yu . Hydroxyl-enriched hydrous tin dioxide-coated BiVO4 with boosted photocatalytic H2O2 production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100457-100457. doi: 10.1016/j.cjsc.2024.100457

    5. [5]

      Xingxing JiangYuxin ZhaoYan KongJianju SunShangzhao FengXin LuQi HuHengpan YangChuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555

    6. [6]

      Ke ZhangSheng ZuoPengyuan YouTong RuFen-Er Chen . Palladium-catalyzed stereoselective decarboxylative [4 + 2] cyclization of 2-methylidenetrimethylene carbonates with pyrrolidone-derived enones: Straightforward access to chiral tetrahydropyran-fused spiro-pyrrolidine-2,3-diones. Chinese Chemical Letters, 2024, 35(6): 109157-. doi: 10.1016/j.cclet.2023.109157

    7. [7]

      Xiaxia XingXiaoyu ChenZhenxu LiXinhua ZhaoYingying TianXiaoyan LangDachi Yang . Polyethylene imine functionalized porous carbon framework for selective nitrogen dioxide sensing with smartphone communication. Chinese Chemical Letters, 2024, 35(9): 109230-. doi: 10.1016/j.cclet.2023.109230

    8. [8]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    9. [9]

      Shuai ZhuMingjie ChenHaichao ShenHanming DingWenbo LiJunliang Zhang . Palladium/Xu-Phos-catalyzed enantioselective arylalkoxylation reaction of γ-hydroxyalkenes at room temperature. Chinese Chemical Letters, 2024, 35(11): 109879-. doi: 10.1016/j.cclet.2024.109879

    10. [10]

      Yunqiang LiYongxian HuangSinuo LiHe HuangZhiwei Jiao . Elaborating azaaryl alkanes enabled by photoredox/palladium dual catalyzed dialkylation of azaaryl alkenes. Chinese Chemical Letters, 2025, 36(4): 110051-. doi: 10.1016/j.cclet.2024.110051

    11. [11]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    12. [12]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    13. [13]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    14. [14]

      Yue ZhangXiaoya FanXun HeTingyu YanYongchao YaoDongdong ZhengJingxiang ZhaoQinghai CaiQian LiuLuming LiWei ChuShengjun SunXuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806

    15. [15]

      Ruixue LiuXiaobing DingQiwei LangGen-Qiang ChenXumu Zhang . Enantioselective and divergent construction of chiral amino alcohols and oxazolidin-2-ones via Ir-f-phamidol-catalyzed dynamic kinetic asymmetric hydrogenation. Chinese Chemical Letters, 2025, 36(3): 110037-. doi: 10.1016/j.cclet.2024.110037

    16. [16]

      Daheng WenWeiwei FangYongmei LiuTao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394

    17. [17]

      Xuehua SUNMin MAJianting LIURui TIANHongmei CHAIHuali CUILoujun GAO . Pr/N co-doped biomass carbon dots with enhanced fluorescence for efficient detection of 2,4-dinitrophenylhydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 561-573. doi: 10.11862/CJIC.20240294

    18. [18]

      Xuhui FanFan WangMengjiao LiFaiza MeharbanYaying LiYuanyuan CuiXiaopeng LiJingsan XuQi XiaoWei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299

    19. [19]

      Yang LiuYan LiuKaiyin YangZhiruo ZhangWenbo ZhangBingyou YangHua LiLixia Chen . A selective HK2 degrader suppresses SW480 cancer cell growth by degrading HK2. Chinese Chemical Letters, 2024, 35(8): 109264-. doi: 10.1016/j.cclet.2023.109264

    20. [20]

      Bin Chen Chaoyang Zheng Dehuan Shi Yi Huang Renxia Deng Yang Wei Zheyuan Liu Yan Yu Shenghong Zhong . p-d orbital hybridization induced by CuGa2 promotes selective N2 electroreduction. Chinese Journal of Structural Chemistry, 2025, 44(1): 100468-100468. doi: 10.1016/j.cjsc.2024.100468

Metrics
  • PDF Downloads(0)
  • Abstract views(708)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return