Citation: Xiao-Jun Dai, Xiao-Liang Xu, Dong-Ping Cheng, Xiao-Nian Li. Visible-light photoredox-mediated oxidation of N-methyl tertiaryamines under catalyst free conditions:Direct synthesis of methylene-bridged bis-1,3-dicarbonyl compounds[J]. Chinese Chemical Letters, ;2014, 25(4): 545-548. doi: 10.1016/j.cclet.2014.01.021 shu

Visible-light photoredox-mediated oxidation of N-methyl tertiaryamines under catalyst free conditions:Direct synthesis of methylene-bridged bis-1,3-dicarbonyl compounds

  • Corresponding author: Xiao-Liang Xu,  Xiao-Nian Li, 
  • Received Date: 6 November 2013
    Available Online: 27 December 2013

  • Mediated by visible light-induced photoredox catalysis and free of other catalysts, a new and efficient synthesis of methylene-bridged bis-1,3-dicarbonyl derivatives has been developed. A variety of N-methyl tertiaryamines and 1,3-dicarbonyl compounds were investigated in this reaction.
  • 加载中
    1. [1]

      [1] (a) S.I. Murahashi, D.Z. Zhang, Ruthenium catalyzed biomimetic oxidation in organic synthesis inspired by cytochrome P-450, Chem. Soc. Rev. 37 (2008) 1490-1501; (b) C.J. Li, Cross-dehydrogenative coupling (CDC): exploring C-C bond formations beyond functional group transformations, Acc. Chem. Res. 42 (2009) 335-344; (c) C.J. Li, The development of catalytic nucleophilic additions of terminal alkynes in water, Acc. Chem. Res. 43 (2010) 581-590; (d) C.S. Yeung, V.M. Dong, Catalytic dehydrogenative cross-coupling: forming carbon-carbon bonds by oxidizing two carbon-hydrogen bonds, Chem. Rev. 111 (2011) 1215-1292; (e) C. Zhang, C.H. Tang, N. Jiao, Recent advances in copper-catalyzed dehydrogenative functionalization via a single electron transfer (SET) process, Chem. Soc. Rev. 41 (2012) 3464-3484.

    2. [2]

      [2] (a) A.G. Condie, J.C. González-Gómez, C.R.J. Stephenson, Visible-light photoredox catalysis: aza-Henry reactions via C-H functionalization, J. Am. Chem. Soc. 132 (2010) 1464-1465; (b) M. Rueping, C. Vila, R.M. Koenigs, K. Poscharny, D.C. Fabry, Dual catalysis: combining photoredox and Lewis base catalysis for direct Mannich reactions, Chem. Commun. 47 (2011) 2360-2362; (c) M. Rueping, S.Q. Zhu, R.M. Koenigs, Visible-light photoredox catalyzed oxidative Strecker reaction, Chem. Commun. 47 (2011) 12709-12711; (d) D.B. Freeman, L. Furst, A.G. Condie, C.R.J. Stephenson, Functionally diverse nucleophilic trapping of iminium intermediates generated utilizing visible light, Org. Lett. 14 (2012) 94-97; (e) G.L. Zhao, C. Yang, L. Guo, et al., Visible light-induced oxidative coupling reaction: easy access to Mannich-type products, Chem. Commun. 48 (2012) 2337-2339; (f) M. Rueping, R.M. Koenigs, K. Poscharny, et al., Dual catalysis: combination of photocatalytic aerobic oxidation and metal catalyzed alkynylation reactions-C-C bond formation using visible light, Chem. Eur. J. 18 (2012) 5170-5174; (g) J. Xuan, Y. Cheng, J. An, et al., Visible light-induced intramolecular cyclization reactions of diamines: a new strategy to construct tetrahydroimidazoles, Chem. Commun. 47 (2011) 8337-8339; (h) S.Q. Zhu, M. Rueping, Merging visible-light photoredox and Lewis acid catalysis for the functionalization and arylation of glycine derivatives and peptides, Chem. Commun. 48 (2012) 11960-11962.

    3. [3]

      [3] (a) K. Zeitler, Photoredox catalysis with visible light, Angew. Chem. Int. Ed. 48 (2009) 9785-9789; (b) T.P. Yoon, M.A. Ischay, J. Du, Visible light photocatalysis as a greener approach to photochemical synthesis, Nat. Chem. 2 (2010) 527-532; (c) J.M.R. Narayanam, C.R.J. Stephenson, Visible light photoredox catalysis: applications in organic synthesis, Chem. Soc. Rev. 40 (2011) 102-113; (d) F. Teplý, Photoredox catalysis by [Ru(bpy)3]2+ to trigger transformations of organic molecules. Organic synthesis using visible-light photocatalysis and its 20th century roots, Collect. Czech. Chem. Commun. 76 (2011) 859-917; (e) L. Shi, W.J. Xia, Photoredox functionalization of C-H bonds adjacent to a nitrogen atom, Chem. Soc. Rev. 41 (2012) 7687-7697; (f) Y.M. You, W. Nam, Photofunctional triplet excited states of cyclometalated Ir(ⅡI) complexes: beyond electroluminescence, Chem. Soc. Rev. 41 (2012) 7061- 7084; (g) J. Xuan, W.J. Xiao, Visible-light photoredox catalysis, Angew. Chem. Int. Ed. 51 (2012) 6828-6838; (h) Y.M. Xi, H. Yi, A.W. Lei, Synthetic applications of photoredox catalysis with visible light, Org. Biomol. Chem. 11 (2013) 2387-2403; (i) C.K. Prier, D.A. Rankic, D.W.C. MacMillan, Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis, Chem. Rev. 113 (2013) 5322-5363.

    4. [4]

      [4] (a) H. Schmaderer, P. Hilgers, R. Lechner, B. König, Photooxidation of benzyl alcohols with immobilized flavins, Adv. Synth. Catal. 351 (2009) 163-174; (b) A. Berlicka, B. König, Porphycene-mediated photooxidation of benzylamines by visible light, Photochem. Photobiol. Sci. 9 (2010) 1359-1366; (c) R. Lechner, S. Kummel, B. König, Visible light flavin photo-oxidation of methylbenzenes, styrenes and phenylacetic acids, Photochem. Photobiol. Sci. 9 (2010) 1367-1377; (d) M. Neumann, S. Füldner, B. König, K. Zeitler, Metal-free, cooperative asymmetric organophotoredox catalysis with visible light, Angew. Chem. Int. Ed. 50 (2011) 951-954; (e) K. Ohkubo, K. Mizushima, R. Iwata, S. Fukuzumi, Selective photocatalytic aerobic bromination with hydrogen bromide via an electron-transfer state of 9- mesityl-10-methylacridinium ion, Chem. Sci. 2 (2011) 715-722; (f) W.H. Zhong, Y.N. Cui, S.M. Li, Y.P. Jia, J.M. Yin, The carbonylation of phenyl bromide and its derivatives under visible light irradiation, Chin. Chem. Lett. 23 (2012) 29-32; (g) D.S. Hamilton, D.A. Nicewicz, Direct catalytic anti-markovnikov hydroetherification of alkenols, J. Am. Chem. Soc. 134 (2012) 18577-18580; (h) J.M.C. Grandjean, D.A. Nicewicz, Synthesis of highly substituted tetrahydrofurans by catalytic polar-radical-crossover cycloadditions of alkenes and alkenols, Angew. Chem. Int. Ed. 52 (2013) 3967-3971; (i) M. Riener, D.A. Nicewicz, Synthesis of cyclobutane lignans via an organic single electron oxidant-electron relay system, Chem. Sci. 4 (2013) 2625-2629; (j) D.J. Wilger, N.J. Gesmundo, D.A. Nicewicz, Catalytic hydrotrifluoromethylation of styrenes and unactivated aliphatic alkenes via an organic photoredox system, Chem. Sci. 4 (2013) 3160-3165; (k) T.M. Nguyen, D.A. Nicewicz, Anti-Markovnikov hydroamination of alkenes catalyzed by an organic photoredox system, J. Am. Chem. Soc. 135 (2013) 9588-9591; (l) A.J. Perkowski, D.A. Nicewicz, Direct catalytic anti-Markovnikov addition of carboxylic acids to alkenes, J. Am. Chem. Soc. 135 (2013) 10334-10337.

    5. [5]

      [5] (a) D.A. Nicewicz, D.W.C. MacMillan, Merging photoredox catalysis with organocatalysis: the direct asymmetric alkylation of aldehydes, Science 322 (2008) 77-80; (b) P.V. Pham, D.A. Nagib, D.W.C. MacMillan, Photoredox catalysis: a mild, operationally simple approach to the synthesis ofa-trifluoromethyl carbonyl compounds, Angew. Chem. Int. Ed. 50 (2011) 6119-6122; (c) M.A. Ischay,M.E.Anzovino, J.Du, T.P. Yoon, Efficient visible light photocatalysis of[2+2] enone cycloadditions, J. Am. Chem. Soc. 130 (2008) 12886-12887; (d) Z. Lu, T.P. Yoon, Visible light photocatalysis of [2+2] styrene cycloadditions by energy transfer, Angew. Chem. Int. Ed. 51 (2012) 10329-10332; (e) J.M.R. Narayanam, J.W. Tucker, C.R.J. Stephenson, Electron-transfer photoredox catalysis: development of a tin-free reductive dehalogenation reaction, J. Am. Chem. Soc. 131 (2009) 8756-8757; (f) J.D. Nguyen, E.M. D'Amato, J.M.R. Narayanam, C.R.J. Stephenson, Engaging unactivated alkyl, alkenyl and aryl iodides in visible-light-mediated free radical reactions, Nat. Chem. 4 (2012) 854-859; (g) C.J. Wallentin, J.D. Nguyen, P. Finkbeiner, C.R.J. Stephenson, Visible light-mediated atom transfer radical addition via oxidative and reductive quenching of photocatalysts, J. Am. Chem. Soc. 134 (2012) 8875-8884; (h) M. Rueping, D. Leonori, T. Poisson, Visible light mediated azomethine ylide formation-photoredox catalyzed [3 + 2] cycloadditions, Chem. Commun. 47 (2011) 9615-9617; (i) Y. Miyake, Y. Ashida, K. Nakajima, Y. Nishibayashi, Visible-light-mediated addition of α-aminoalkyl radicals generated from a-silylamines to α,β-unsaturated carbonyl compounds, Chem. Commun. 48 (2012) 6966-6968; (j) T. Hering, D.P. Hari, B. Ko¨nig, Visible-light-mediated a-arylation of enol acetates using aryl diazonium salts, J. Org. Chem. 77 (2012) 10347-10352; (k) M. Chen, Z.T. Huang, Q.Y. Zheng, Visible light-induced 3-sulfenylation of Nmethylindoles with arylsulfonyl chlorides, Chem. Commun. 48 (2012) 11686- 11688; (l) M.H. Larraufie, R. Pellet, L. Fensterbank, et al., Visible-light-induced photoreductive generation of radicals from epoxides and aziridines, Angew. Chem. Int. Ed. 50 (2011) 4463-4466; (m) Y. Yasu, T. Koike, M. Akita, Visible-light-induced synthesis of a variety of trifluoromethylated alkenes from potassium vinyltrifluoroborates by photoredox catalysis, Chem. Commun. 49 (2013) 2037-2039.

    6. [6]

      [6] W.J. Yoo, A. Tanoue, S. Kobayashi, Aerobic oxidation of a tertiary aliphatic amine under visible-light photocatalysis: facile synthesis of methylene-bridged bis-1,3- dicarbonyl compounds, Chem. Asian J. 7 (2012) 2764-2767.

    7. [7]

      [7] (a) D.R. Hwang, B.J. Uang, A modified Mannich-type reaction catalyzed by VO(acac) 2, Org. Lett. 4 (2002) 463-466; (b) Y.S. Hon, T.R. Hsu, C.Y. Chen, et al., Dibromomethane as one-carbon source in organic synthesis: microwave-accelerated a-methylenation of ketones with dibromomethane and diethylamine, Tetrahedron 59 (2003) 1509-1520; (c) H.J. Li, Z.H. He, X.W. Guo, et al., Iron-catalyzed selective oxidation of N-methyl amines: highly efficient synthesis of methylene-bridged bis-1,3-dicarbonyl compounds, Org. Lett. 11 (2009) 4176-4179; (d) R. Balamurugan, S. Manojveer, Gold/copper-catalyzed activation of the aciform of nitromethane in the synthesis of methylene-bridged bis-1,3-dicarbonyl compounds, Chem. Commun. 47 (2011) 11143-11145.

    8. [8]

      [8] A.G. Hu, W.B. Lin, Ru-catalyzed asymmetric hydrogenation of a-phthalimide ketones and 1,3-diaryl diketones using 4,40-substituted BINAPs, Org. Lett. 7 (2005) 455-458.

  • 加载中
    1. [1]

      Huaixiang YangMiao-Miao LiAijun ZhangJiefei GuoYongqi YuWei Ding . Visible-light-induced photocatalyst- and metal-free radical phosphinoyloximation of alkenes with tert-butyl nitrite as bifunctional reagent. Chinese Chemical Letters, 2025, 36(3): 110425-. doi: 10.1016/j.cclet.2024.110425

    2. [2]

      Xiaoxue LiHongwei ZhouRongrong QianXu ZhangLei Yu . A concise synthesis of Se/Fe materials for catalytic oxidation reactions of anthracene and polyene. Chinese Chemical Letters, 2025, 36(3): 110036-. doi: 10.1016/j.cclet.2024.110036

    3. [3]

      Zhikang WuGuoyong DaiQi LiZheyu WeiShi RuJianda LiHongli JiaDejin ZangMirjana ČolovićYongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061

    4. [4]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    5. [5]

      Zhiwei ZhongYanbin HuangWantai Yang . A simple photochemical method for surface fluorination using perfluoroketones. Chinese Chemical Letters, 2024, 35(5): 109339-. doi: 10.1016/j.cclet.2023.109339

    6. [6]

      Zhixiang LiZhirong YangChang YaoBin WuGang QianXuezhi DuanXinggui ZhouJing Zhang . Efficient continuous synthesis of 2-hydroxycarbazole and 4-hydroxycarbazole in a millimeter scale photoreactor. Chinese Chemical Letters, 2024, 35(4): 108893-. doi: 10.1016/j.cclet.2023.108893

    7. [7]

      Yi LiuPeng LeiYang FengShiwei FuXiaoqing LiuSiqi ZhangBin TuChen ChenYifan LiLei WangQing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571

    8. [8]

      Kexin YinJingren YangYanwei LiQian LiXing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847

    9. [9]

      Gang HuChun WangQinqin WangMingyuan ZhuLihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298

    10. [10]

      Jing-Jing ZhangLujun LouRui LvJiahui ChenYinlong LiGuangwei WuLingchao CaiSteven H. LiangZhen Chen . Recent advances in photochemistry for positron emission tomography imaging. Chinese Chemical Letters, 2024, 35(8): 109342-. doi: 10.1016/j.cclet.2023.109342

    11. [11]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    12. [12]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    13. [13]

      Yanling YangZhenfa DingHuimin WangJianhui LiYanping ZhengHongquan GuoLi ZhangBing YangQingqing GuHaifeng XiongYifei Sun . Dynamic tracking of exsolved PdPt alloy/perovskite catalyst for efficient lean methane oxidation. Chinese Chemical Letters, 2024, 35(4): 108585-. doi: 10.1016/j.cclet.2023.108585

    14. [14]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    15. [15]

      Meng WangYan ZhangYunbo YuWenpo ShanHong He . High-temperature calcination dramatically promotes the activity of Cs/Co/Ce-Sn catalyst for soot oxidation. Chinese Chemical Letters, 2025, 36(1): 109928-. doi: 10.1016/j.cclet.2024.109928

    16. [16]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    17. [17]

      Shuo LiXinran LiuYongjie ZhengJun MaShijie YouHeshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971

    18. [18]

      Wenjing Dai Lan Luo Zhen Yin . Interface reconstruction of hybrid oxide electrocatalysts for seawater oxidation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100442-100442. doi: 10.1016/j.cjsc.2024.100442

    19. [19]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    20. [20]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

Metrics
  • PDF Downloads(0)
  • Abstract views(721)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return