Citation: Guo-Qi Liang, Zhong-Bao Zhang, Hong-Qi Li, Ya-Ping Wang, Chun-Ying Xian. Synthesis and electrochemical properties of a chiral silyl-substituted tetrathiafulvalene derivative[J]. Chinese Chemical Letters, ;2014, 25(4): 579-582. doi: 10.1016/j.cclet.2014.01.018 shu

Synthesis and electrochemical properties of a chiral silyl-substituted tetrathiafulvalene derivative

  • Corresponding author: Hong-Qi Li, 
  • Received Date: 7 October 2013
    Available Online: 24 December 2013

  • A new chiral tetrathiafulvalene (TTF) derivative and related silyl-substituted 1,3-dithiole-2-(thi)one compounds were synthesized and characterized by 1H NMR, 13C NMR, MS and IR spectra. Single crystal structure of the silyl-substituted 1,3-dithiole-2-one revealed the high degree of conjugation of the fivemembered ring moiety in the compound. The electrochemical properties of the new TTF derivative were studied by cyclic voltammetry and the results indicated that the electron-donating ability of the chiral TTF derivative was similar to that of BEDT-TTF. The ΔE value for the new TTF derivative was smaller than those for TTF and BEDT-TTF, indicative of decreased Coulombic repulsion in the dicationic redox state. Formation of charge-transfer (CT) complex between the new donor and electron acceptor 2,3-dichloro- 5,6-dicyano-1,4-benzoquinone (DDQ) was demonstrated.
  • 加载中
    1. [1]

      [1] N. Avarvari, J.D. Wallis, Strategies towards chiral molecular conductors, J. Mater. Chem. 19 (2009) 4061-4076.

    2. [2]

      [2] (a) A. Saad, F. Barrière, E. Levillain, et al., Persistent mixed-valence [(TTF)2]+* dyad of a chiral bis(binaphthol) tetrathiafulvalene (TTF) derivative, Chem. Eur. J. 16 (2010) 8020-8028; (b) S.J. Yang, A.C. Brooks, L. Martin, et al., Novel enantiopure bis(pyrrolo)tetrathiafulvalene donors exhibiting chiral crystal packing arrangements, CrystEngComm 11 (2009) 993-996; (c) M. Chas, F. Riobé, R. Sancho, C. Minguillon, N. Avarvari, Selective monosulfoxidationof tetrathiafulvalenes intochiralTTF-sulfoxides,Chirality21(2009)818-825; (d) C. Réthoré, A. Madalan, M. Fourmigué, et al., O×S vs. N×S intramolecular nonbonded interactions in neutral and radical cation salts of TTF-oxazoline derivatives: synthesis, theoretical investigations, crystalline structures, and physical properties, New J. Chem. 31 (2007) 1468-1483; (e) C. Réthoré, M. Fourmigué, N. Avarvari, Tetrathiafulvalene-hydroxyamides and - oxazolines: hydrogen bonding, chirality, and a radical cation salt, Tetrahedron 61 (2005) 10935-10942; (f) C. Réthoré, M. Fourmigué, N. Avarvari, Tetrathiafulvalene based phosphinooxazolines: a new family of redox active chiral ligands, Chem. Commun. (2004) 1384-1385; (g) S. Matsumiya, A. Izuoka, T. Sugawara, T. Taruishi, Y. Kawada, Effect of methyl substitution on conformation andmolecular arrangement of BEDT-TTF derivatives in the crystalline environment, Bull. Chem. Soc. Jpn. 66 (1993) 513-522; (h) J.D. Wallis, A. Karrer, J.D. Dunitz, Chiral metals? A chiral substrate for organic conductors and superconductors, Helv. Chim. Acta 69 (1986) 69-70.

    3. [3]

      [3] (a) F. Pop, P. Auban-Senzier, A. Fraąckwiak, et al., Chirality driven metallic versus semiconducting behavior in a complete series of radical cation salts based on dimethyl-ethylenedithio-tetrathiafulvalene (DM-EDT-TTF), J. Am. Chem. Soc. 135 (2013) 17176-17186; (b) F. Pop, S. Laroussi, T. Cauchy, et al., Tetramethyl-bis(ethylenedithio)-tetrathiafulvalene (TM-BEDT-TTF) revisited: crystal structures, chiroptical properties, theoretical calculations, and a complete series of conducting radical cation salts, Chirality 25 (2013) 466-474; (c) A. Saad, O. Jeannin, M. Fourmigué, Chiral, flexible binaphthol-substituted tetrathiafulvalenes, Tetrahedron 67 (2011) 3820-3829; (d) A.M. Madalan, C. Réthoré,M. Fourmigué, et al., Order versus disorder in chiral tetrathiafulvalene-oxazoline radical-cation salts: structural and theoretical investigations and physical properties, Chem. Eur. J. 16 (2010) 528-537; (e) M. Chas, M. Lemarié, M. Gulea, N. Avarvari, Chemo- and enantioselective sulfoxidation of bis(ethylenedithio)-tetrathiafulvalene (BEDT-TTF) into chiral BEDT-TTF-sulfoxide, Chem. Commun. (2008) 220-222; (f) C. Réthoré, N. Avarvari, E. Canadell, P. Auban-Senzier, M. Fourmigué, Chiral molecular metals: syntheses, structures, and properties of the AsF6 - salts of racemic (±)-, (R)-, (S)-tetrathiafulvalene-oxazoline derivatives, J. Am. Chem. Soc. 127 (2005) 5748-5749; (g) A. Karrer, J.D. Wallis, J.D. Dunitz, et al., Structures and electrical properties of some new organic conductors derived fromthe donormolecule TMET (S,S,S,Sbis( dimethylethylenedithio)tetrathiafulvalene), Helv. Chim. Acta 70 (1987) 942-953.

    4. [4]

      [4] (a) C. Réthoré, F. Riobé, M. Fourmigué, et al., Tetrathiafulvalene-oxazoline ligands in the iridium catalyzed enantioselective hydrogenation of arylimines, Tetrahedron: Asymmetry 18 (2007) 1877-1882; (b) C. Réthoré, I. Suisse, F. Agbossou-Niedercorn, et al., Chiral tetrathiafulvalene based phosphine- and thiomethyl-oxazoline ligands. Evaluation in palladium catalysed asymmetric allylic alkylation, Tetrahedron 62 (2006) 11942-11947; (c) A. Chesney, M.R. Bryce, Chiral oxazolines linked to tetrathiafulvalene (TTF): redox-active ligands for asymmetric synthesis, Tetrahedron: Asymmetry 7 (1996) 3247-3254.

    5. [5]

      [5] (a) T. Biet, A. Fihey, T. Cauchy, et al., Ethylenedithio-tetrathiafulvalene-helicenes: electroactive helical precursors with switchable chiroptical properties, Chem. Eur. J. 19 (2013) 13160-13167; (b) Y.L. Si, G.C. Yang, Z.M. Su, Chiroptical, linear, and second-order nonlinear optical properties of tetrathiafulvalenylallene: a multifunctional molecular material, J. Mater. Chem. C 1 (2013) 1399-1406; (c) M. Hasegawa, Y. Sone, S. Iwata, H. Matsuzawa, Y. Mazaki, Tetrathiafulvalenylallene: a new class of donor molecules having strong chiroptical properties in neutral and doped states, Org. Lett. 13 (2011) 4688-4691.

    6. [6]

      [6] (a) C. Wang, F. Sun, D.Q. Zhang, et al., Cholesterol-substituted tetrathiafulvalene (TTF) compound: formation of organogel and supramolecular chirality, Chin. J. Chem. 28 (2010) 622-626; (b) I. Danila, F. Riobé, J. Puigmartí-Luis, et al., Supramolecular electroactive organogel and conducting nanofibers with C3-symmetrical architectures, J. Mater. Chem. 19 (2009) 4495-4504; (c) I. Danila, F. Pop, C. Escudero, et al., Twists and turns in the hierarchical self-assembly pathways of a non-amphiphilic chiral supramolecular material, Chem. Commun. 48 (2012) 4552-4554; (d) I. Danila, F. Riobé, F. Piron, et al., Hierarchical chiral expression from the nanoto mesoscale in synthetic supramolecular helical fibers of a nonamphiphilic C3- symmetrical p-functional molecule, J. Am. Chem. Soc. 133 (2011) 8344-8353.

    7. [7]

      [7] (a) A. Hameau, F. Guyon, M. Knorr, et al., Synthesis and reactivity of silylated tetrathiafulvalenes, Dalton Trans. 36 (2008) 4866-4876; (b) F. Biaso, M. Geoffroy, E. Canadell, et al., Intramolecular mixed-valence state through silicon or germanium double bridges in rigid bis(tetrathiafulvalenes), Chem. Eur. J. 13 (2007) 5394-5400.

    8. [8]

      [8] (a) M. Carmack, C.J. Kelley, The synthesis of the optically active Cleland reagent[(±)-1,4-dithio-Lg-threitol], J. Org. Chem. 33 (1968) 2171-2173; (b) A.F. Rodney, An efficient synthesis of (±)-posticlure: the sex pheromone of Orgyia postica, Eur. J. Org. Chem. (2007) 5064-5070; (c) P.M. Chincholkar, A.S. Kale, V.K. Gumaste, A.R.A.S. Deshmukh, An efficient formal synthesis of (S)-dapoxetine from enantiopure 3-hydroxy azetidin-2-one, Tetrahedron 65 (2009) 2605-2609.

    9. [9]

      [9] P.W. Feit, 1,4-Bismethanesulfonates of the stereoisomeric butanetetraols and related compounds, J. Med. Chem. 7 (1964) 14-17.

    10. [10]

      [10] A.E. Wróblewski, I.E. Góowacka, Enantiomerically pure 4-amino-1,2,3-trihydroxybutylphosphonic acids, Tetrahedron 61 (2005) 11930-11938.

    11. [11]

      [11] M. Periasamy, M. Thirumalaikumar, Methods of enhancement of reactivity and selectivity of sodium borohydride for applications in organic synthesis, J. Organomet. Chem. 609 (2000) 137-151.

    12. [12]

      [12] G. Liu, Z. Wang, Total synthesis of koninginin D, B and E, Synthesis (2001) 119-127.

    13. [13]

      [13] G.A. Horley, T. Ozturk, F. Turksoy, J.D. Wallis, New substrates for the preparation of electroactive materials: the syntheses of chiral tetrathiafulvalene derivatives with hydroxyfunctionalised butane-1,4-dithio bridges, J. Chem. Soc., Perkin Trans. 1 (1998) 3225-3231.

    14. [14]

      [14] K. Zong, W. Chen, M.P. Cava, R.D. Rogers, Synthesis and properties of bis(2,5- dimethylpyrrolo[3,4-d]) tetrathiafulvalenes, a class of annelated tetrathiafulvalene derivatives with excellent electron donor properties, J. Org. Chem. 61 (1996) 8117-8124.

    15. [15]

      [15] L. Wang, H. Cho, S.H. Lee, et al., Liquid crystalline mesophases based on symmetric tetrathiafulvalene derivatives, J. Mater. Chem. 21 (2011) 60-64.

    16. [16]

      [16] A.R. Murphy, J.M.J. Fréchet, Organic semiconducting oligomers for use in thin film transistors, Chem. Rev. 107 (2007) 1066-1096.

  • 加载中
    1. [1]

      Xue XinQiming QuIslam E. KhalilYuting HuangMo WeiJie ChenWeina ZhangFengwei HuoWenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654

    2. [2]

      Zixuan GuoXiaoshuai HanChunmei ZhangShuijian HeKunming LiuJiapeng HuWeisen YangShaoju JianShaohua JiangGaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007

    3. [3]

      Qiang CaoXue-Feng ChengJia WangChang ZhouLiu-Jun YangGuan WangDong-Yun ChenJing-Hui HeJian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759

    4. [4]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    5. [5]

      Li LiZhi-Xin YanChuan-Kun RanYi LiuShuo ZhangTian-Yu GaoLong-Fei DaiLi-Li LiaoJian-Heng YeDa-Gang Yu . Electro-reductive carboxylation of CCl bonds in unactivated alkyl chlorides and polyvinyl chloride with CO2. Chinese Chemical Letters, 2024, 35(12): 110104-. doi: 10.1016/j.cclet.2024.110104

    6. [6]

      Yan-Jiang LiShu-Lei ChouYao Xiao . Detecting dynamic structural evolution based on in-situ high-energy X-ray diffraction technology for sodium layered oxide cathodes. Chinese Chemical Letters, 2025, 36(2): 110389-. doi: 10.1016/j.cclet.2024.110389

    7. [7]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    8. [8]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    9. [9]

      Yifei Cheng Jiahui Yang Wei Shao Wanqun Zhang Wanqun Hu Weiwei Li Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033

    10. [10]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    11. [11]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    12. [12]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    13. [13]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    14. [14]

      Qi LiZi-Lu WangYun-He Xu . Copper-catalyzed 1,4-silylcyanation of 1,3-enynes: A silyl radical-initiated approach for synthesis of difunctionalized allenes. Chinese Chemical Letters, 2025, 36(3): 109991-. doi: 10.1016/j.cclet.2024.109991

    15. [15]

      Zhiwen Li Jingjing Zhang Gao Li . Dynamic assembly of chiral golden knots. Chinese Journal of Structural Chemistry, 2024, 43(7): 100300-100300. doi: 10.1016/j.cjsc.2024.100300

    16. [16]

      Long JinJian HanDongmei FangMin WangJian Liao . Pd-catalyzed asymmetric carbonyl alkynylation: Synthesis of axial chiral ynones. Chinese Chemical Letters, 2024, 35(6): 109212-. doi: 10.1016/j.cclet.2023.109212

    17. [17]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    18. [18]

      Wenying CuiZhetong JinWentao FuChengshuo Shen . Flag-hinge-like highly luminescent chiral nanographenes with twist geometry. Chinese Chemical Letters, 2024, 35(11): 109667-. doi: 10.1016/j.cclet.2024.109667

    19. [19]

      Genlin SunYachun LuoZhihong YanHongdeng QiuWeiyang Tang . Chiral metal-organic frameworks-based materials for chromatographic enantioseparation. Chinese Chemical Letters, 2024, 35(12): 109787-. doi: 10.1016/j.cclet.2024.109787

    20. [20]

      Teng-Yu HuangJunliang SunDe-Xian WangQi-Qiang Wang . Recent progress in chiral zeolites: Structure, synthesis, characterization and applications. Chinese Chemical Letters, 2024, 35(12): 109758-. doi: 10.1016/j.cclet.2024.109758

Metrics
  • PDF Downloads(0)
  • Abstract views(631)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return