Citation: Lotfali Saghatforoush, Mohammad Hasanzadeh, Nasrin Shadjou. Polystyrene-graphene oxide modified glassy carbon electrode as a new class of polymeric nanosensors for electrochemical determination of histamine[J]. Chinese Chemical Letters, ;2014, 25(4): 655-658. doi: 10.1016/j.cclet.2014.01.014 shu

Polystyrene-graphene oxide modified glassy carbon electrode as a new class of polymeric nanosensors for electrochemical determination of histamine

  • Corresponding author: Lotfali Saghatforoush,  Mohammad Hasanzadeh,  Nasrin Shadjou, 
  • Received Date: 8 October 2013
    Available Online: 19 December 2013

  • A simple and rapid protocol for the synthesis of polystyrene-graphene oxide nanocomposite (PS/GONC) was achieved for first time using an in situ polymerization method. PS/GONC modified glassy carbon electrode (PS/GONC/GCE) has been employed as an efficient nanosensor for the electrooxidation of histamine. The PS/GONC/GCE is used as an electrochemical nanosensors for monitoring histamine using differential pulse voltammetry techniques (detection limit 0.03 μmol/L). In addition, the prepared nanosensor was successfully applied to determine histamine in fish samples, yielding satisfactory results. The spiked recoveries were in the range of 98.2%-103.1%.
  • 加载中
    1. [1]

      [1] F. Schedin, A.K. Geim, S.V. Morozov, et al., Detection of individual gas molecules adsorbed on graphene, Nat. Mater. 6 (2007) 652.655.

    2. [2]

      [2] F. Yavari, N. Koratkar, Graphene-based chemical sensors, J. Phys. Chem. Lett. 3 (2012) 1746.1753.

    3. [3]

      [3] E. Massera, V. La Ferrara, M. Miglietta, et al., Gas sensors based on graphene: comparison of two different fabrication approaches, Chim. Oggi. 29 (2011) 39.41.

    4. [4]

      [4] A. Reina, X.T. Jia, J. Ho, et al., Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition, Nano Lett. 9 (2009) 30.35.

    5. [5]

      [5] M.Y. Zhu, J.J. Wang, B.C. Holloway, et al., A mechanism for carbon nanosheet formation, Carbon 45 (2007) 2229.2234.

    6. [6]

      [6] D. Li, M.B. Mu丯 ller, S. Gilje, R.B. Kaner, G.G. Wallance, Processable aqueous dispersions of graphene nanosheets, Nat. Nanotechnol. 3 (2008) 101.105.

    7. [7]

      [7] S. Park, R.S. Ruoff, Chemical methods for the production of graphemes, Nat. Nanotechnol. 4 (2009) 217.224.

    8. [8]

      [8] V.C. Tung, M.J. Allen, Y. Yang, R.B. Kaner, High-throughput solution processing of large-scale grapheme, Nat. Nanotechnol. 4 (2009) 25.29.

    9. [9]

      [9] K.S. Novoselov, A.K. Geim, S.V. Morozov, et al., Electric field effect in atomically thin carbon films, Science 306 (2004) 666.669.

    10. [10]

      [10] http://www.nobelprize.org/nobel_prizes/physics/laureates/2010/advanced-physicsprize2010. pdf.

    11. [11]

      [11] P. Avouris, Z.H. Chen, V. Perebeinos, Carbon-based electronics, Nat. Nanotechnol. 2 (2007) 605.615.

    12. [12]

      [12] A.A. Balandin, S. Ghosh, W.Z. Bao, et al., Superior thermal conductivity of singlelayer graphene, Nano Lett. 8 (2008) 902.907.

    13. [13]

      [13] T.J. Booth, P. Blake, R.R. Nair, et al., Macroscopic graphene membranes and their extraordinary stiffness, Nano Lett. 8 (2008) 2442.2446.

    14. [14]

      [14] (a) C.G. Lee, X.D. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321 (2008) 385.388; (b) X.L. Wu, P. Liu, Facile preparation and characterization of graphene nanosheets/polystyrene composites, Macromol. Res. 18 (2010) 1008.1012; (c) B.Z. Jang, A. Zhamu, Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review, J. Mater. Sci. 43 (2008) 5092.5101; (d) S. Stankovich, D.A. Dikin, G.H.B. Dommett, et al., Graphene-based composite materials, Nature 442 (2006) 282.286; (e) T. Ramanathan, A.A. Abdala, S. Stankovich, et al., Functionalized graphene sheets for polymer nanocomposites, Nat. Nanotechnol. 3 (2008) 327.331.

    15. [15]

      [15] (a) R. Sengupta, M. Bhattacharya, S. Bandyopadhyay, A.K. Bhowmick, A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites, Prog. Polym. Sci. 36 (2011) 638.670; (b) H.A. Becerril, J. Mao, Z.F. Liu, et al., Evaluation of solution-processed reduced graphene oxide films as transparent conductors, ACS Nano 2 (2008) 463.470; (c) K.S. Kim, Y. Zhao, H. Jang, et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature 457 (2009) 706.710; (d) X.L. Li, G.Y. Zhang, X.D. Bai, et al., Highly conducting graphene sheets and Langmuir.Blodgett films, Nat. Nanotechnol. 3 (2008) 538.542.

    16. [16]

      [16] X. Wang, L.J. Zhi, N. Tsao, et al., Transparent carbon films as electrodes in organic solar cells, Angew. Chem. Int. Ed. 47 (2008) 2990.2992.

    17. [17]

      [17] J.T. Robinson, F.K. Perkins, E.S. Snow, Z.Q. Wei, P.E. Sheehan, Reduced graphene oxide molecular sensors, Nano Lett. 8 (2008) 3137.3140.

    18. [18]

      [18] (a) M.D. Stoller, S.J. Park, Y.W. Zhu, J.H. An, R.S. Ruoff, Graphene-based ultracapacitors, Nano Lett. 8 (2008) 3498.3502; (b) A. Das, S. Pisana, B. Chakraborty, et al., Monitoring dopants by raman scattering in an electrochemically top-gated graphene transistor, Nat. Nanotechnol. 3 (2008) 210.215.

    19. [19]

      [19] G. Eda, G. Fanchini, M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material, Nat. Nanotechnol. 3 (2008) 270.274.

    20. [20]

      [20] (a) E. Yoo, J. Kim, E.Hosono, et al., Large reversible Li storage of graphene nanosheet families foruseinrechargeablelithiumionbatteries,NanoLett.8(2008)2277.2282; (b) P.K. Ang,W. Chen, A.T.S. Wee, K.P. Loh, Solution-gated epitaxial graphene as pH sensor, J. Am. Chem. Soc. 130 (2008) 14392.14393; (c) J. Dayen, A.Mahmood, D.S. Golubev, et al., Side-gated transport in focused-ionbeam- fabricated multilayered graphene nanoribbons, Small 4 (2008) 716.720; (d) Y.C. Si, E.T. Samulski, Exfoliated graphene separated by platinumnanoparticles, Chem. Mater. 20 (2008) 6792.6797.

    21. [21]

      [21] Y.X. Xu, H. Bai, G.W. Lu, C. Li, G.Q. Shi, Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets, J. Am. Chem. Soc. 130 (2008) 5856.5857.

    22. [22]

      [22] R. Muszynski, B. Seger, P.V. Kamat, Decorating graphene sheets with gold nanoparticles, J. Phys. Chem. C 112 (2008) 5263.5266.

    23. [23]

      [23] J. Jordan, K.I. Jacob, R. Tannenbaum, M.A. Sharaf, I. Jasiuk, Experimental trends in polymer nanocomposites.a review, Mater. Sci. Eng. A 393 (2005) 1.11.

    24. [24]

      [24] N.A. Kotov,Materials science: carbon sheet solutions, Nature 442 (2006) 254.255.

    25. [25]

      [25] G. Eda, M. Chhowalla, Graphene-based composite thin films for electronics, Nano Lett. 9 (2009) 814.818.

    26. [26]

      [26] A.S. Patole, S.P. Patole, H. Kang, et al., A facile approach to the fabrication of graphene/polystyrene nanocomposite by in situ microemulsion polymerization, J. Colloid Interface Sci. 350 (2010) 530.537.

    27. [27]

      [27] R.F. Ding, Y. Hua, Z. Gui, et al., Preparation and characterization of polystyrene/ graphite oxide nanocomposite by emulsion polymerization, Polym. Degrad. Stab. 81 (2003) 473.476.

    28. [28]

      [28] H.T. Hu, X.B. Wang, J.C. Wang, et al., Preparation and properties of graphene nanosheets-polystyrene nanocomposites via in situ emulsion polymerization, Chem. Phys. Lett. 484 (2010) 247.253.

    29. [29]

      [29] S. Pé>rez, J. Bartrol., E. Fàbregas, Amperometric biosensor for the determination of histamine in fish samples, Food Chem. 141 (2013) 4066.4072.

    30. [30]

      [30] D. Telsnig, K. Kalcher, A. Leitner, A. Ortner, Design of an amperometric biosensor for the determination of biogenic amines using screen printed carbon working electrodes, Electroanalysis 25 (2013) 47.50.

    31. [31]

      [31] J. S.varc-Gajic, Z. Stojanovic, Electrocatalytic determination of histamine on a nickel-film glassy carbon electrode, Electroanalysis 22 (2010) 2931.2939.

    32. [32]

      [32] C.M. Keow, F. Abu Bakar, A.B. Salleh, et al., Screen-printed histamine biosensors fabricated from the entrapment of diamine oxidase in a photocured poly (HEMA) film, Int. J. Electrochem. Sci. 7 (2012) 4702.4715.

    33. [33]

      [33] M. Di Fusco, R. Federico, A. Boffi, et al., Characterization and application of a diamine oxidase from Lathyrus sativus as component of an electrochemical biosensor for the determination of biogenic amines in wine and beer, Anal. Bioanal. Chem. 401 (2011) 707.716.

    34. [34]

      [34] R. Draisci, P.G. Volpe, O.L. Lucentini, et al., Determination of biogenic amines with an electrochemical biosensor and its application to salted anchovies, Food Chem. 62 (1998) 225.232.

    35. [35]

      [35] H.K. Mah, J.H. Han, Y.J. Oh, M.G. Kim, H.J. Hwang, Biogenic amines in Jeotkals, Korean salted and fermented fish products, Food Chem. 79 (2002) 239.243.

    36. [36]

      [36] M. Hasanzadeh, N. Shadjou, (Fe3O4)-Graphene oxide-SO3H as a new magnetic nanocatalyst for electro-oxidation and determination of selected parabens, J. Nanosci. Nanotechnol. 13 (2013) 4909.4916.

    37. [37]

      [37] E. Omidinia, N. Shadjou, M. Hasanzadeh, (Fe3O4)-graphene oxide as a novel magnetic nanomaterial for non-enzymatic determination of phenylalanine, Mater. Sci. Eng. C 33 (2013) 4624.4632.

  • 加载中
    1. [1]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

    2. [2]

      An LuYuhao GuoYi YanLin ZhaiXiangyu WangWeiran CaoZijie LiZhixia ZhaoYujie ShiYuanjun ZhuXiaoyan LiuHuining HeZhiyu WangJian-Cheng Wang . Nanomedicine integrating the lipidic derivative of 5-fluorouracil, miriplatin and PD-L1 siRNA for enhancing tumor therapy. Chinese Chemical Letters, 2024, 35(6): 108928-. doi: 10.1016/j.cclet.2023.108928

    3. [3]

      Yuanyi ZhouKe MaJinfeng LiuZirun ZhengBo HuYu MengZhizhong LiMingshan Zhu . Is reactive oxygen species the only way for cancer inhibition over single atom nanomedicine? Autophagy regulation also works. Chinese Chemical Letters, 2024, 35(6): 109056-. doi: 10.1016/j.cclet.2023.109056

    4. [4]

      Yujie LiYa-Nan WangYin-Gen LuoHongcai YangJinrui RenXiao Li . Advances in synthetic biology-based drug delivery systems for disease treatment. Chinese Chemical Letters, 2024, 35(11): 109576-. doi: 10.1016/j.cclet.2024.109576

    5. [5]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

    6. [6]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    7. [7]

      Yihong LiZhong QiuLei HuangShenghui ShenPing LiuHaomiao ZhangFeng CaoXinping HeJun ZhangYang XiaXinqi LiangChen WangWangjun WanYongqi ZhangMinghua ChenWenkui ZhangHui HuangYongping GanXinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510

    8. [8]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    9. [9]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    10. [10]

      Yue PanWenping SiYahao LiHaotian TanJi LiangFeng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877

    11. [11]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    12. [12]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    13. [13]

      Wenjing Dai Lan Luo Zhen Yin . Interface reconstruction of hybrid oxide electrocatalysts for seawater oxidation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100442-100442. doi: 10.1016/j.cjsc.2024.100442

    14. [14]

      Neng ShiHaonan JiaJixiang ZhangPengyu LuChenglong CaiYixin ZhangLiqiang ZhangNongyue HeWeiran ZhuYan CaiZhangqi FengTing Wang . Accurate expression of neck motion signal by piezoelectric sensor data analysis. Chinese Chemical Letters, 2024, 35(9): 109302-. doi: 10.1016/j.cclet.2023.109302

    15. [15]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    16. [16]

      Yiran TaoChunlei DaiZhaoxiang XieXinru YouKaiwen LiJun WuHai Huang . Redox responsive polymeric nanoparticles enhance the efficacy of cyclin dependent kinase 7 inhibitor for enhanced treatment of prostate cancer. Chinese Chemical Letters, 2024, 35(8): 109170-. doi: 10.1016/j.cclet.2023.109170

    17. [17]

      Yu QinMingyang HuangChenlu HuangHannah L. PerryLinhua ZhangDunwan Zhu . O2-generating multifunctional polymeric micelles for highly efficient and selective photodynamic-photothermal therapy in melanoma. Chinese Chemical Letters, 2024, 35(7): 109171-. doi: 10.1016/j.cclet.2023.109171

    18. [18]

      Tingting HuChao ShenXueyan WangFengbo WuZhiyao He . Tumor microenvironment-sensitive polymeric nanoparticles for synergetic chemo-photo therapy. Chinese Chemical Letters, 2024, 35(11): 109562-. doi: 10.1016/j.cclet.2024.109562

    19. [19]

      Xue ZhengJizhen XieXing ZhangWeiting SunHeyang ZhaoYantuan LiCheng Wang . Corrigendum to "An overview of polymeric nanomicelles in clinical trials and on the market" [Chinese Chemical Letters 32 (2021) 243-257]. Chinese Chemical Letters, 2025, 36(2): 110545-. doi: 10.1016/j.cclet.2024.110545

    20. [20]

      Shuang LiangJianjun YaoDan LiuMengli ZhouYong CuiZhaohui Wang . Tumor-responsive covalent organic polymeric nanoparticles enhancing STING activation for cancer immunotherapy. Chinese Chemical Letters, 2025, 36(3): 109856-. doi: 10.1016/j.cclet.2024.109856

Metrics
  • PDF Downloads(0)
  • Abstract views(695)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return