Citation:
Yu-Qiao Wang, Xue-Ling Gao, Bo Song, Yun-Liang Gu, Yue-Ming Sun. Photoelectrochemical properties of MWCNT-TiO2 hybrid materials as a counter electrode for dye-sensitized solar cells[J]. Chinese Chemical Letters,
;2014, 25(4): 491-495.
doi:
10.1016/j.cclet.2014.01.003
-
The MWCNT-TiO2 hybrid materials were prepared by a simply mixing method and used as a counter electrode (CE) for dye-sensitized solar cells. Compared with the platinum CE, MWCNT-TiO2 CE has the similar redox voltage and current response in the cyclic voltammetry. The electrochemical catalytic activity was characterized by the electrochemical impedance spectroscopy and Tafel curve, including the equivalent circuit, the exchange current density, the limiting diffusion current density, and the diffusion coefficient of triiodide/iodide redox species. The results indicate that the reduction process from triiodide to iodide is determined by the kinetic-controlled and diffusion-limited processes. The device performance is optimal based on the MWCNT-TiO2 (mass ratio of 2:1) CE, such as the open-circuit voltage of 0.72 V, the short-circuit photocurrent density of 15.71 mA/cm2, the fill factor of 0.68, and the photon-to-electron conversion efficiency of 7.69%.
-
Keywords:
- Photoelectrochemistry,
- Counter electrode,
- Hybrid material,
- Solar cell
-
-
-
[1]
[1] B. Lee, D.B. Buchholz, R. Chang, An all carbon counter electrode for dye-sensitized solar cells, Energy Environ. Sci. 5 (2012) 6941-6952.
-
[2]
[2] G.T. Yue, J.H. Wu, J. Lin, et al., A counter electrode of multi-wall carbon nanotubes decorated with tungsten sulfide used in dye-sensitized solar cells, Carbon 55 (2013) 1-9.
-
[3]
[3] S. Das, P. Sudhagar, V. Verma, et al., Amplifying charge-transfer characteristics of graphene for triiodide reduction in dye-sensitized solar cells, Adv. Funct. Mater. 21 (2011) 3729-3736.
-
[4]
[4] P. Sudhagar, S. Nagarajan, Y. Lee, et al., Synergistic catalytic effect of a composite (CoS/PEDOT:PSS) counter electrode on triiodide reduction in dye-sensitized solar cells, ACS Appl. Mater. Interfaces 3 (2011) 1838-1843.
-
[5]
[5] J. Zhang, T. Hreid, X.Y. Li, et al., Nanostructured polyaniline counter electrode for dye-sensitised solar cells: fabrication and investigation of its electrochemical formation mechanism, Electrochim. Acta 55 (2010) 3664-3668.
-
[6]
[6] M.X. Wu, X. Lin, Y.D. Wang, et al., Economical Pt-free catalysts for counter electrodes of dye-sensitized solar cells, J. Am. Chem. Soc. 134 (2012) 3419-3428.
-
[7]
[7] Y.D. Wang, M.X. Wu, X. Lin, et al., Several highly efficient catalysts for Pt-free and FTO-free counter electrodes of dye-sensitized solar cells, J. Mater. Chem. 22 (2012) 4009-4014.
-
[8]
[8] Y. Xiao, J. Lin, S.Y. Tai, et al., Pulse electropolymerization of high performance PEDOT/MWCNT counter electrodes for Pt-free dye-sensitized solar cells, J. Mater. Chem. 22 (2012) 19919-19925.
-
[9]
[9] P. Joshi, Y. Xie, M. Ropp, et al., Dye-sensitized solar cells based on low cost nanoscale carbon/TiO2 composite counter electrode, Energy Environ. Sci. 2 (2009) 426-429.
-
[10]
[10] K. Huang, Y. Wang, R. Dong, et al., A high performance dye-sensitized solar cell with a novel nanocomposite film of PtNP/MWCNT on the counter electrode, J. Mater. Chem. 20 (2010) 4067-4073.
-
[11]
[11] Y.Q. Wang, Y.M. Sun, B. Song, J.T. Xi, Ionic liquid electrolytes based on 1-vinyl-3- alkylimidazolium iodides for dye-sensitized solar cells, Sol. Energy Mater. Sol. Cells 92 (2008) 660-666.
-
[12]
[12] Y.R. Gao, L.L. Chu, W. Guo, L.T. Ma, Synthesis and photoelectric properties of an organic dye containing benzo[1,2-b:4,5-b 0]dithiophene for dye-sensitized solar cells, Chin. Chem. Lett. 24 (2013) 149-152.
-
[13]
[13] Y.T. Tang, X. Pan, C.N. Zhang, et al., Influence of different electrolytes on the reaction mechanism of a triiodide/iodide redox couple on the platinized FTO glass electrode in dye-sensitized solar cells, J. Phys. Chem. C 114 (2010) 4160-4167.
-
[1]
-
-
-
[1]
Hongye Bai , Lihao Yu , Jinfu Xu , Xuliang Pang , Yajie Bai , Jianguo Cui , Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096
-
[2]
Limin Wang , Feiyi Huang , Xinyi Liang , Rajkumar Devasenathipathy , Xiaotian Liu , Qiulan Huang , Zhongyun Yang , Dujuan Huang , Xinglan Peng , Du-Hong Chen , Youjun Fan , Wei Chen . Photoelectric synergy induced synchronous functionalization of graphene and its applications in water splitting and desalination. Chinese Journal of Structural Chemistry, 2025, 44(2): 100501-100501. doi: 10.1016/j.cjsc.2024.100501
-
[3]
Yingfen Li , Zhiqi Wang , Yunhai Zhao , Dajun Luo , Xueliang Zhang , Jun Zhao , Zhenghua Su , Shuo Chen , Guangxing Liang . Potassium doping for grain boundary passivation and defect suppression enables highly-efficient kesterite solar cells. Chinese Chemical Letters, 2024, 35(11): 109468-. doi: 10.1016/j.cclet.2023.109468
-
[4]
Junqing Wu , Yiyang Zhang , Qingqing Hong , Hui Yang , Lifeng Zhang , Ming Zhang , Lei Yu . Organometallic modification of silica with europium endowing the fluorescence properties: The key technique for numerical quality monitoring. Chinese Chemical Letters, 2025, 36(4): 110165-. doi: 10.1016/j.cclet.2024.110165
-
[5]
Min LUO , Xiaonan WANG , Yaqin ZHANG , Tian PANG , Fuzhi LI , Pu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205
-
[6]
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
-
[7]
Jingxuan Liu , Shiqi Zhao , Xiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059
-
[8]
Shaonan Liu , Shuixing Dai , Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2024.100277
-
[9]
Ning DING , Siyu WANG , Shihua YU , Pengcheng XU , Dandan HAN , Dexin SHI , Chao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146
-
[10]
Kangrong Yan , Ziqiu Shen , Yanchun Huang , Benfang Niu , Hongzheng Chen , Chang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516
-
[11]
Chengcheng Xie , Chengyi Xiao , Hongshuo Niu , Guitao Feng , Weiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849
-
[12]
Jing JIN , Zhuming GUO , Zhiyin XIAO , Xiujuan JIANG , Yi HE , Xiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458
-
[13]
Yunan Yuan , Zhimin Luo , Jie Chen , Chaoliang He , Kai Hao , Huayu Tian . Constructing thermoresponsive PNIPAM-based microcarriers for cell culture and enzyme-free cell harvesting. Chinese Chemical Letters, 2024, 35(7): 109549-. doi: 10.1016/j.cclet.2024.109549
-
[14]
Yaohua Li , Qi Cao , Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413
-
[15]
Weiyu Chen , Zenghui Li , Chenguang Zhao , Lisha Zha , Junfeng Shi , Dan Yuan . Enzyme-modulate conformational changes in amphiphile peptide for selectively cell delivery. Chinese Chemical Letters, 2024, 35(12): 109628-. doi: 10.1016/j.cclet.2024.109628
-
[16]
Haiyang Gu , Xiang Xu . Multicolor hybrid metal halides and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(9): 100352-100352. doi: 10.1016/j.cjsc.2024.100352
-
[17]
Wenjing Dai , Lan Luo , Zhen Yin . Interface reconstruction of hybrid oxide electrocatalysts for seawater oxidation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100442-100442. doi: 10.1016/j.cjsc.2024.100442
-
[18]
Qingyan JIANG , Yanyong SHA , Chen CHEN , Xiaojuan CHEN , Wenlong LIU , Hao HUANG , Hongjiang LIU , Qi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004
-
[19]
Yu ZHANG , Fangfang ZHAO , Cong PAN , Peng WANG , Liangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412
-
[20]
Xin-Tong Zhao , Jin-Zhi Guo , Wen-Liang Li , Jing-Ping Zhang , Xing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(670)
- HTML views(0)