Citation: Ya-Nan Ye, Pei-Yuan Li, Yong-Gang Shangguan, Zhi-Sheng Fu, Qiang Zheng, Zhi-Qiang Fan. A convenient, highly-efficient method for preparation of hydroxyl-terminated isotactic poly(propylene) and functional di-block copolymer[J]. Chinese Chemical Letters, ;2014, 25(4): 596-600. doi: 10.1016/j.cclet.2014.01.001 shu

A convenient, highly-efficient method for preparation of hydroxyl-terminated isotactic poly(propylene) and functional di-block copolymer

  • Corresponding author: Yong-Gang Shangguan,  Zhi-Sheng Fu, 
  • Received Date: 6 September 2013
    Available Online: 24 December 2013

    Fund Project: This work was supported by the National Natural Science Foundation of China (No. 51173157) (No. 51173157) National High-Tech R&D Program of China (No. 2012AA040305) (No. 2012AA040305)the Major State Basic Research Programs (No. 2011CB606001). (No. 2011CB606001)

  • Both terminated functional isotactic polypropylene (iPP) and block copolymers containing iPP segment are desirable for commercial applications. This paper provides a convenient, highly-efficient method to prepare hydroxyl-terminated isotactic polypropylene (iPP-t-OH) and functional di-block copolymer containing the iPP segment through a combination of coordination polymerization and coupling reaction. The coordination polymerization was catalyzed by TiCl4/MgCl2/AlEt3 catalyst system using ZnEt2 as chain transfer agent. Further, the Zn-terminated iPP was oxidized and subsequently hydrolyzed to provide iPP-t-OH. Soxhlet extraction and 13C NMR were used to calculate the isotacticity of iPP-t-OH. The degree of polymerization and the number of hydroxyl groups at the chain end of iPP-t-OH were measured by GPC and 1H NMR. Despite the high molecular weight and heterogeneous reaction, iPP-t-OH is effectively linked with PEG-t-NCO to produce di-block copolymers. DSC analysis of the di-block copolymer shows an obvious decrease in Tm and Tc, which indicated that PEG was successfully linked to the terminal end of iPP.
  • 加载中
    1. [1]

      [1] T.C.M. Chung, Functionalization of Polyolefins, Academic Press Inc., Califoria, 2002.

    2. [2]

      [2] L.S. Boffa, B.M. Novak, Copolymerization of polar monomers with olefins using transition-metal complexes, Chem. Rev. 100 (2000) 1479-1493.

    3. [3]

      [3] R. Mülhaupt, Catalytic polymerization and post polymerization catalysis fifty years after the discovery of Ziegler’s catalysts, Macromol. Chem. Phys. 204 (2003) 289-327.

    4. [4]

      [4] S.B. Amin, T.J. Marks, Versatile pathways for in situ polyolefin functionalization with heteroatoms: catalytic chain transfer, Angew. Chem. Int. Ed. 47 (2008) 2006- 2025.

    5. [5]

      [5] W.T. Lin, J.Y. Dong, T.C.M. Chung, Synthesis of chain end functional isotactic polypropylene by the combination of metallocene/MAO catalyst and organoborane chain transfer agent, Macromolecules 41 (2008) 8452-8457.

    6. [6]

      [6] T.C. Chung, Synthesis of functional polyolefin copolymers with graft and block structures, Prog. Polym. Sci. 27 (2002) 39-85.

    7. [7]

      [7] E.J. Goethals, Telechelic Polymers: Synthesis and Applications, CRC Press Inc., Florida, 1989.

    8. [8]

      [8] B. Lu, T.C. Chung, Maleic anhydride modified polypropylene with controllable molecular structure: new synthetic route via borane-terminated polypropylene, Macromolecules 31 (1998) 5943-5946.

    9. [9]

      [9] B. Lu, T.C. Chung, New maleic anhydride modified PP copolymers with block structure: synthesis and application in PP/polyamide reactive blends, Macromolecules 32 (1999) 2525-2533.

    10. [10]

      [10] B. Lu, T.C. Chung, Synthesis of long chain branched polypropylene with relatively well-defined molecular structure, Macromolecules 32 (1999) 8678-8680.

    11. [11]

      [11] A.M. Anderson-Wile, G.W. Coates, F. Auriemma, C. De Rosa, A. Silvestre, Synthesis and ring-opening metathesis polymerization of norbornene-terminated syndiotactic polypropylene, Macromolecules 45 (2012) 7863-7877.

    12. [12]

      [12] H. Kurosawa, T. Shiono, K. Soga, Synthesis of vinyl-terminated isotactic poly(propylene) using the coupling reaction between Zn-terminated polymer and allyl halides, Macromol. Chem. Phys. 195 (1994) 1381-1388.

    13. [13]

      [13] T. Shiono, K. Soga, Synthesis of terminally aluminum-functionalized polypropylene, Macromolecules 25 (1992) 3356-3361.

    14. [14]

      [14] T. Shiono, K. Soga, Synthesis of terminally halogenated isotactic poly(propylene)s using hydroalumination, Makromol. Chem. Rapid Commun. 13 (1992) 371-376.

    15. [15]

      [15] T. Shiono, K.K. Kang, H. Hagihara, T. Ikeda, Novelty of vinylidene-terminated polypropylene prepared by a MgCl2-supported TiCl4 catalyst combined with AlEt3 as cocatalyst, Macromolecules 30 (1997) 5997-6000.

    16. [16]

      [16] W.Q. Weng, E.J. Markel, A.H. Dekmezian, Synthesis of vinyl-terminated isotactic poly(propylene), Macromol. Rapid Commun. 21 (2000) 1103-1107.

    17. [17]

      [17] S.G. Gaynor, Vinyl chloride as a chain transfer agent in olefin polymerizations: preparation of highly branched and end functional polyolefins, Macromolecules 36 (2003) 4692-4698.

    18. [18]

      [18] T.C. Chung, D. Rhubright, G. Jiang, Synthesis of polypropylene-graft-poly(methyl methacrylate) copolymers by the borane approach, Macromolecules 26 (1993) 3467-3471.

    19. [19]

      [19] T.C. Chung, D. Rhubright, Polypropylene-graft-polycaprolactone: synthesis and applications in polymer blends, Macromolecules 27 (1994) 1313-1319.

    20. [20]

      [20] J.H. Song, B. Messer, Y.Y. Wu, H. Kind, P.D. Yang, MMo3Se3(M = Li+, Na+, Rb+, Cs+, NMe4 +) nanowire formation via cation exchange in organic solution, J. Am. Chem. Soc. 123 (2001) 9714-9715.

    21. [21]

      [21] K. Matyjaszewski, J. Saget, J. Pyun, M. Schlö gl, B. Rieger, Synthesis of polypropylene- poly(meth)acrylate block copolymers using metallocene catalyzed processes and subsequent atom transfer radical polymerization, J. Macromol. Sci. A 39 (2002) 901-913.

    22. [22]

      [22] H. Kaneko, J. Saito, N. Kawahara, et al., Synthesis and characterization of polypropylene- based block copolymers possessing polar segments via controlled radical polymerization, J Polym. Sci. A: Polym. Chem. 47 (2009) 812-823.

    23. [23]

      [23] H. Yasuda, M. Furo, H. Yamamoto, et al., New approach to block copolymerizations of ethylene with alkyl methacrylates and lactones by unique catalysis with organolanthanide complexes, Macromolecules 25 (1992) 5115-5116.

    24. [24]

      [24] M. Brookhart, J. DeSimone, B.E. Grant, M.J. Tanner, Cobalt(ⅡI)-catalyzed living polymerization of ethylene: routes to end-capped polyethylene with a narrow molar mass distribution, Macromolecules 28 (1995) 5378-5380.

    25. [25]

      [25] K.J. Shea, J.W. Walker, H. Zhu, M. Paz, J. Greaves, Polyhomologation. A living polymethylene synthesis, J. Am. Chem. Soc. 119 (1997) 9049-9050.

    26. [26]

      [26] G. Desurmont, T. Tokimitsu, H. Yasuda, First controlled block copolymerizations of higher 1-olefins with polar monomers using metallocene type single component lanthanide initiators, Macromolecules 33 (2000) 7679-7681.

    27. [27]

      [27] H.H. Huang, H. Niu, J.Y. Dong, Synthesis of star isotactic polypropylene using click chemistry, Macromolecules 43 (2010) 8331-8335.

    28. [28]

      [28] C.H. Zhang, H. Niu, J.Y. Dong, Facile functionalization of isotactic polypropylene by azide and alkyne groups for click chemistry application, Appl. Organomet. Chem. 25 (2011) 632-637.

    29. [29]

      [29] T. Shiono, H. Kurosawa, K. Soga, Isospecific polymerization of propene over TiCl3 combined with bis(.omega.-alkenyl) zinc compounds, Macromolecules 28 (1995) 437-443.

    30. [30]

      [30] T. Shiono, K. Yoshida, K. Soga, Synthesis of terminally hydroxylated isotactic polypropylene using Zn(C2H5)2 and oxygen as chain transfer and quenching reagents, Makromol. Chem. Rapid Commun. 11 (1990) 169-175.

    31. [31]

      [31] L.F. Tong, Y. Shen, Q. Zheng, Y.G. Shang-guan, A novel approach for observing morphology of polypropylene under ultrasonic vibration by SALS, Chin. Chem. Lett. 15 (2004) 841-844.

    32. [32]

      [32] J.E. Mark, Polymer Data Handbook, Oxford University Press, New York, 1999.

    33. [33]

      [33] A. Zambelli, P. Locatelli, G. Bajo, F.A. Bovey, Model compounds and 13C NMR observation of stereosequences of polypropylene, Macromolecules 8 (1975) 687- 689.

    34. [34]

      [34] A. Zambelli, D.E. Dorman, A.I.R. Brewster, F.A. Bovey, Carbon-13 observations of the stereochemical configuration of polypropylene, Macromolecules 6 (1973) 925-926.

    35. [35]

      [35] Y. Inoue, A. Nishioka, R. Chuûjoô, Carbon-13 nuclear magnetic resonance spectroscopy of polypropylene, Die Makromol. Chem. 152 (1972) 15-26.

    36. [36]

      [36] F.Y. Tzeng, M.C. Lin, J.Y. Wu, et al., Stereoregular diblock copolymers of syndiotactic polypropylene and polyesters: syntheses and self-assembled nanostructures, Macromolecules 42 (2009) 3073-3085.

    37. [37]

      [37] J.Y. Dong, G.Q. Fang, Z.C. Han, Hydroxyl-terminated polypropylene and its preparation method, Chinese Patent 20041000990.6, 2004.

    38. [38]

      [38] C. Gong, Z. Qian, C. Liu, et al., A thermosensitive hydrogel based on biodegradable amphiphilic poly(ethylene glycol)-polycaprolactone-poly(ethylene glycol) block copolymers, Smart Mater. Struct. 16 (2007) 927-933.

  • 加载中
    1. [1]

      Ziyi Liu Xunying Liu Lubing Qin Haozheng Chen Ruikai Li Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405

    2. [2]

      Yaxuan Jin Chao Zhang Guigang Zhang . Atomically dispersed low-valent Au on poly(heptazine imide) boosts photocatalytic hydroxyl radical production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100414-100414. doi: 10.1016/j.cjsc.2024.100414

    3. [3]

      Yiwen LinYijie ChenChunhui DengNianrong Sun . Integration of resol/block-copolymer carbonization and machine learning: A convenient approach for precise monitoring of glycan-associated disorders. Chinese Chemical Letters, 2024, 35(12): 109813-. doi: 10.1016/j.cclet.2024.109813

    4. [4]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    5. [5]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    6. [6]

      Lu DaiYuxin RenShuang LiMeidi WangChentao HuYa-Pan WuGuangtong HaiDong-Sheng Li . Room-temperature synthesis of Co(OH)2/Mo2TiC2Tx hetero-nanosheets with interfacial coupling for enhanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 109774-. doi: 10.1016/j.cclet.2024.109774

    7. [7]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

    8. [8]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

    9. [9]

      Junying LIXinyan CHENXihui DIAOMuhammad YaseenChao CHENHao WANGChuansong QIWei LI . Chiral fluorescent sensor Tb3+@Cd-CP based on camphoric acid for the enantioselective recognition of R- and S-propylene glycol. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2497-2504. doi: 10.11862/CJIC.20240084

    10. [10]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    11. [11]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    12. [12]

      Xinlong HanHuiying ZengChao-Jun Li . Trifluoromethylative homo-coupling of carbonyl compounds. Chinese Chemical Letters, 2025, 36(1): 109817-. doi: 10.1016/j.cclet.2024.109817

    13. [13]

      Weijian ZhangXianyu DengLiying WangJian WangXiuting GuoLianggui HuangXinyi WangJun WuLinjia Jiang . Poly(ferulic acid) nanocarrier enhances chemotherapy sensitivity of acute myeloid leukemia by selectively targeting inflammatory macrophages. Chinese Chemical Letters, 2024, 35(9): 109422-. doi: 10.1016/j.cclet.2023.109422

    14. [14]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    15. [15]

      Mengyuan LiXitong RenYanmei GaoMengyao MuShiping ZhuShufang TianMinghua Lu . Constructing bifunctional magnetic porous poly(divinylbenzene) polymer for high-efficient removal and sensitive detection of bisphenols. Chinese Chemical Letters, 2024, 35(12): 109699-. doi: 10.1016/j.cclet.2024.109699

    16. [16]

      Haibo YeQianyu LiJuan LiDidi LiZhimin Ao . Review on the abiotic degradation of biodegradable plastic poly(butylene adipate-terephthalate): Mechanisms and main factors of the degradation. Chinese Chemical Letters, 2025, 36(1): 109861-. doi: 10.1016/j.cclet.2024.109861

    17. [17]

      Shuxin LiuJinjuan MaAiguo WangNan Zheng . Decomposable and sono-enzyme co-triggered poly(sonosensitizers) for precise and hypotoxic sonodynamic therapy. Chinese Chemical Letters, 2025, 36(4): 110032-. doi: 10.1016/j.cclet.2024.110032

    18. [18]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    19. [19]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

    20. [20]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

Metrics
  • PDF Downloads(0)
  • Abstract views(624)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return