Citation: Long Zhang, Yang-Ping Wen, Yuan-Yuan Yao, Zi-Fei Wang, Xue-Min Duan, Jing-Kun Xu. Electrochemical sensor based on f-SWCNT and carboxylic group functionalized PEDOT for the sensitive determination of bisphenol A[J]. Chinese Chemical Letters, ;2014, 25(4): 517-522. doi: 10.1016/j.cclet.2013.12.020 shu

Electrochemical sensor based on f-SWCNT and carboxylic group functionalized PEDOT for the sensitive determination of bisphenol A

  • Corresponding author: Xue-Min Duan,  Jing-Kun Xu, 
  • Received Date: 24 October 2013
    Available Online: 25 November 2013

    Fund Project: The authors would like to acknowledge the financial support of this work by the NSFC (Nos. 51272096, 51263010) (Nos. 51272096, 51263010) Jiangxi Provincial Department of Education (Nos. GJJ10678, GJJ11590) (Nos. GJJ10678, GJJ11590) Natural Science Foundation of Jiangxi Province (Nos. 2010GZH0041, 20114BAB203015) (Nos. 2010GZH0041, 20114BAB203015) Jiangxi Science & Technology Normal University (No. KY2010ZY13) (No. KY2010ZY13)

  • A simple, sensitive, and reliable method for the voltammetric determination of bisphenol A (BPA) by using carboxylic group functionalized single-walled carbon nanotubes (f-SWCNT)/carboxylic-functionalized poly(3,4-ethylenedioxythiophene) (PC4) complex modified glassy carbon electrode (GCE) has been successfully developed. The electrochemical behavior of BPA at the surface of the modified electrode is investigated by electrochemical techniques. The cyclic voltammetry results show that the as-prepared electrode exhibits strong catalytic activity toward the oxidation of BPA with a well-defined anodic peak at 0.623 V in PBS (0.1 mol/L, pH 7.0). The surface morphology of the 3D network of composite filmis beneficial for the adsorption of analytes. Under the optimized conditions, the oxidation peak current is proportional to BPA concentration in the range between 0.099 and 5.794 μmol/L (R2 = 0.9989), with a limit of detection of 0.032 μmol/L (S/N = 3). The enhanced performance of the sensor can be attributed to the excellent electrocatalytic property of f-SWCNT and the extraordinary conductivity of PC4. Furthermore, the proposed modified electrode displays high stability and good reproducibility. The good result on the voltammetric determination of BPA also indicates that the asfabricated modified electrode will be a good candidate for the electrochemical determination and analysis of BPA.
  • 加载中
    1. [1]

      [1] B.S. Rubin, Bisphenol A: an endocrine disruptor with widespread exposure and mulyiple effects, J. Steroid Biochem. 127 (2011) 27-34.

    2. [2]

      [2] H. Segner, K. Caroll, M. Fenske, et al., Identification of endocrine-disrupting effects in aquatic vertebrates and invertebrates: report from the European IDEA project, Ecotoxicol. Environ. Saf. 54 (2003) 302-314.

    3. [3]

      [3] E. Carlsen, A. Giwercman, N. Keiding, N.E. Skakkebaek, Declining semen quality and increasing incidence of testicular cancer: is there a common cause, Environ. Health Perspect. 103 (1995) 137-139.

    4. [4]

      [4] X.H. Long, R. Steinmetz, N. Ben-Jonathan, et al., Strain differences in vaginal responses to the xenoestrogen bisphenol A, Environ. Health Perspect. 108 (2000) 243-247.

    5. [5]

      [5] J.H. Kang, F. Kondo, Y. Katayama, Human exposure to bisphenol A, Toxicology 226 (2006) 79-89.

    6. [6]

      [6] T.Y. Chun, J. Gorski, High concentrations of bisphenol A induce cell growth and prolactin secretion in an estrogen-responsive pituitary tumor cell line, Toxicol. Appl. Pharmacol. 162 (2000) 161-165.

    7. [7]

      [7] T. Goloubkova, M.F.M. Ribeiro, L.P. Rodrigues, A.L. Cecconello, P.M. Spritzer, Effects of xenoestrogen bisphenol A on uterine and pituitary weight, serum prolactin levels and immunoreactive prolactin cells in ovariectomized wistar rats, Arch. Toxicol. 74 (2000) 92-98.

    8. [8]

      [8] R. Steinmetz, N.A. Mitchner, A. Grant, et al., The xenoestrogen bisphenol A induces growth, differentiation, and c-fos gene expression in the female reproductive tract, Endocrinology 139 (1998) 2741-2747.

    9. [9]

      [9] M.C. Estévez, R. Galve, F. Sánchez-Baeza, M.P. Marco, Direct competitive enzymelinked immunosorbent assay for the determination of the highly polar shortchain sulfophenyl carboxylates, Anal. Chem. 77 (2005) 5283-5293.

    10. [10]

      [10] C. Lu, J.G. Li, Y. Yang, J.M. Lin, Determination of bisphenol A based on chemiluminescence from gold (ⅡI)-peroxymonocarbonate, Talanta 82 (2010) 1576-1580.

    11. [11]

      [11] K. Inoue, K. Kato, Y. Yoshimura, T. Makino, H. Nakazawa, Determination of bisphenol A in human serum by high-performance liquid chromatography with multi-electrode electrochemical detection, J. Chromatogr. B 749 (2000) 17-23.

    12. [12]

      [12] W.H. Zhao, N. Sheng, R. Zhu, et al., Preparation of dummy template imprinted polymers at surface of silica microparticles for the selective extraction of trace bisphenol A from water samples, J. Hazard. Mater. 179 (2010) 223-229.

    13. [13]

      [13] M. Liu, Y. Hashi, F.Y. Pan, et al., Automated on-line liquid chromatographyphotodiode array-mass spectrometry method with dilution line for the determination of bisphenol A and 4-octylphenol in serum, J. Chromatogr. A 1133 (2006) 142-148.

    14. [14]

      [14] R.J.W. Meesters, H.F. Schröder, Simultaneous determination of 4-nonylphenol and bisphenol A in sewage sludge, Anal. Chem. 74 (2002) 3566-3574.

    15. [15]

      [15] S.C. Cunha, J.O. Fernandes, Quantification of free and total bisphenol A and bisphenol B in human urine by dispersive liquid-liquid microextraction (DLLME) and heart-cutting multidimensional gas chromatography-mass spectrometry (MD-GC.MS), Talanta 83 (2010) 117-125.

    16. [16]

      [16] H.S. Yin, L. Cui, S.Y. Ai, H. Fan, L.S. Zhu, Electrochemical determination of bisphenol A at Mg-Al-CO3 layered double hydroxide modified glassy carbon electrode, Electrochim. Acta 55 (2010) 603-610.

    17. [17]

      [17] H.S. Yin, Y.L. Zhou, L. Cui, et al., Electrochemical oxidation behavior of bisphenol A at surfactant/layered double hydroxide modified glassy carbon electrode and its determination, J. Solid State Electrochem. 15 (2011) 167-173.

    18. [18]

      [18] X.M. Tu, L.S. Yan, X.B. Luo, S.L. Luo, Q.J. Xie, Electroanalysis of bisphenol A at a multiwalled carbon nanotubes-gold nanoparticles modified glassy carbon electrode, Electroanalysis 21 (2009) 2491-2494.

    19. [19]

      [19] F. Brugnera, M.A.G. Trindade, M.V.B. Zanoni, Detection of bisphenol A on a screenprinted carbon electrode in CATB micellar medium, Anal. Lett. 43 (2010) 2823- 2836.

    20. [20]

      [20] C.M. Yu, L.L. Gou, X.H. Zhou, N. Bao, H.Y. Gu, Chitosan-Fe3O4 nanocomposite based electrochemical sensors for the determination of bisphenol A, Electrochim. Acta 56 (2011) 9056-9063.

    21. [21]

      [21] Y. Gao, Y. Cao, D.G. Yang, et al., Sensitivity and selectivity determination of bisphenol A using SWCNT-CD conjugate modified glassy carbon electrode, J. Hazard. Mater. 199-200 (2012) 111-118.

    22. [22]

      [22] Y.G. Li, Y. Gao, Y. Cao, H.M. Li, Electrochemical sensor for bisphenol A determination based on MWCNT/melamine complex modified GCE, Sens. Actuators B: Chem. 171-172 (2012) 726-733.

    23. [23]

      [23] Q.X. Wang, Y.H. Wang, S.Y. Liu, et al., Voltammetric detection of bisphenol A by a chitosan-graphene composite modified carbon ionic liquid electrode, Thin Solid Films 520 (2012) 4459-4464.

    24. [24]

      [24] E. Mazzotta, C. Malitesta, E. Margapoti, Direct electrochemical detection of bisphenol A at PEDOT-modified glassy carbon electrodes, Anal. Bioanal. Chem. 405 (2013) 3587-3592.

    25. [25]

      [25] T.A. Skotheim, J.R. Reynolds, Handbook of Conducting Polymers, Conjugated Polymers: Theory, Synthesis, Properties, and Characterization, CRC Press, Boca Raton, 2007.

    26. [26]

      [26] L.B. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, J.R. Reynolds, Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future, Adv. Mater. 12 (2000) 481-494.

    27. [27]

      [27] L.B. Groenendaal, G. Zotti, P.H. Aubert, S.M. Waybright, J.R. Reynolds, Electrochemistry of poly(3,4-alkylenedioxythiophene) derivatives, Adv. Mater. 15 (2003) 855-879.

    28. [28]

      [28] A. Elschner, S. Kirchmeyer, W. Lovenich, U. Merker, K. Reuter, PEDOT: Principles and Applications of an Intrinsically Conductive Polymer, CRC Press, London, 2011.

    29. [29]

      [29] S. Kirchmeyer, K. Reuter, Scientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene), J. Mater. Chem. 15 (2005) 2077-2088.

    30. [30]

      [30] S.C. Luo, E.M. Ali, N.C. Tansil, et al., Poly(3,4-ethylenedioxythiophene) (PEDOT) nanobiointerfaces: thin, ultrasmooth, and functionalized PEDOT films with in vitro and in vivo biocompatibility, Langmuir 24 (2008) 8071-8077.

    31. [31]

      [31] E.M. Ali, E.A.B. Kantchev, H.H. Yu, J.Y. Ying, Conductivity shift of polyethylenedioxythiophenes in aqueous solutions from side-chain charge perturbation, Macromolecules 40 (2007) 6025-6027.

    32. [32]

      [32] Y. Shi, S.C. Luo, W.J. Feng, et al., Work function engineering of electrodes via electropolymerization of ethylenedioxythiophenes and its derivatives, Org. Electron. 9 (2008) 859-863.

    33. [33]

      [33] H. Xie, S.C. Luo, H.H. Yu, Electric-field-assisted growth of functionalized poly(3,4- ethylenedioxythiophene) nanowires for label-free protein detection, Small 5 (2009) 2611-2617.

    34. [34]

      [34] S.C. Luo, H. Xie, N.Y. Chen, H.H. Yu, Trinity DNA detection platform by ultrasmooth and functionalized PEDOT biointerfaces, ACS Appl. Mater. Inter. 1 (2009) 1414- 1419.

    35. [35]

      [35] J. Arias-Pardilla, T.F. Otero, H.H. Yu, Electropolymerization and characterization of COOH-functionalized poly(3,4-ethylenedioxythiophene): ionic exchanges, Electrochim. Acta 56 (2011) 10238-10245.

    36. [36]

      [36] J. Sekine, S.C. Luo, S. Wang, et al., Functionalized conducting polymer nanodots for enhanced cell capturing: the synergistic effect of capture agents and nanostructures, Adv. Mater. 23 (2011) 4788.

    37. [37]

      [37] J. Wang, M. Musameh, Y. Lin, Solubilization of carbon nanotubes by nafion toward the preparation of amperometric biosensors, J. Am. Chem. Soc. 125 (2003) 2408- 2409.

    38. [38]

      [38] W. Wu, H.R. Zhu, L.Z. Fan, et al., Sensitive dopamine recognition by boronic acid functionalized multi-walled carbon nanotubes, Chem. Commun. (2007) 2345- 2347.

    39. [39]

      [39] J.J. Gooding, R. Wibowo, J.Q. Liu, et al., Protein electrochemistry using aligned carbon nanotube arrays, J. Am. Chem. Soc. 125 (2003) 9006-9007.

    40. [40]

      [40] M. Trojanowicz, Analytical applications of carbon nanotubes: a review, TrACTrends Anal. Chem. 25 (2006) 480-489.

    41. [41]

      [41] A. Goldoni, R. Larciprete, L. Petaccia, S. Lizzit, Single-wall carbon nanotube interaction with gases: sample contaminants and environmental monitoring, J. Am. Chem. Soc. 125 (2003) 11329-11333.

    42. [42]

      [42] J. Wang, Carbon-nanotube based electrochemical biosensors: a review, Electroanalysis 17 (2005) 7-14.

    43. [43]

      [43] Y. Lu, Y.P. Wen, B.Y. Lu, et al., Electrosynthesis and characterization of poly(hydroxyl- methylated-3,4-ethylenedioxythiophene) film in aqueous micellar solution and its biosensing application, Chin. J. Polym. Sci. 30 (2012) 824-836.

    44. [44]

      [44] M. Liu, Y.P. Wen, D. Li, et al., A stable sandwich-type amerometric biosensor based on poly(3,4-ethylenedioxythiophen)-single walled carbon nanotubes/ascorbate oxidase/nafion films for detection of L-ascorbic acid, Sens. Actuators B: Chem. 159 (2011) 277-285.

  • 加载中
    1. [1]

      Qinwei LuJinjie LuJuying LeiXubiao LuoYanbo Zhou . Cyclodextrin-boosted photocatalytic oxidation for efficient bisphenol A removal. Chinese Chemical Letters, 2025, 36(3): 110017-. doi: 10.1016/j.cclet.2024.110017

    2. [2]

      Yun-Xin HuangLin-Qian YuKe-Yu ChenHao WangShou-Yan ZhaoBao-Cheng HuangRen-Cun Jin . Biochar with self-doped N to activate peroxymonosulfate for bisphenol-A degradation via electron transfer mechanism: The active edge graphitic N site. Chinese Chemical Letters, 2024, 35(9): 109437-. doi: 10.1016/j.cclet.2023.109437

    3. [3]

      Jie ZhouChuanxiang ZhangChangchun HuShuo LiYuan LiuZhu ChenSong LiHui ChenRokayya SamiYan Deng . Electrochemical aptasensor based on black phosphorus-porous graphene nanocomposites for high-performance detection of Hg2+. Chinese Chemical Letters, 2024, 35(11): 109561-. doi: 10.1016/j.cclet.2024.109561

    4. [4]

      Shuo LiXinran LiuYongjie ZhengJun MaShijie YouHeshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971

    5. [5]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    6. [6]

      Junjun HuangRan ChenYajian HuangHang ZhangAnran ZhengQing XiaoDan WuRuxia DuanZhi ZhouFei HeWei Yi . Discovery of an enantiopure N-[2-hydroxy-3-phenyl piperazine propyl]-aromatic carboxamide derivative as highly selective α1D/1A-adrenoceptor antagonist and homology modelling. Chinese Chemical Letters, 2024, 35(11): 109594-. doi: 10.1016/j.cclet.2024.109594

    7. [7]

      Yuanjiao LiuXiaoyang ZhaoSongyao ZhangYi WangYutuo ZhengXinrui MiaoWenli Deng . Site-selection and recognition of aromatic carboxylic acid in response to coronene and pyridine derivative. Chinese Chemical Letters, 2024, 35(8): 109404-. doi: 10.1016/j.cclet.2023.109404

    8. [8]

      An LuYuhao GuoYi YanLin ZhaiXiangyu WangWeiran CaoZijie LiZhixia ZhaoYujie ShiYuanjun ZhuXiaoyan LiuHuining HeZhiyu WangJian-Cheng Wang . Nanomedicine integrating the lipidic derivative of 5-fluorouracil, miriplatin and PD-L1 siRNA for enhancing tumor therapy. Chinese Chemical Letters, 2024, 35(6): 108928-. doi: 10.1016/j.cclet.2023.108928

    9. [9]

      Junying ZhangRuochen LiHaihua WangWenbing KangXing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216

    10. [10]

      Zhongxiong Sun Haili Song Mei-Huan Zhao Yijie Zeng Man-Rong Li . Structural determination and exotic resistive behaviour of α-RuI3 under high-pressure. Chinese Journal of Structural Chemistry, 2025, 44(2): 100429-100429. doi: 10.1016/j.cjsc.2024.100429

    11. [11]

      Luyan ShiKe ZhuYuting YangQinrui LiangQimin PengShuqing ZhouTayirjan Taylor IsimjanXiulin Yang . Phytic acid-derivative Co2B-CoPOx coralloidal structure with delicate boron vacancy for enhanced hydrogen generation from sodium borohydride. Chinese Chemical Letters, 2024, 35(4): 109222-. doi: 10.1016/j.cclet.2023.109222

    12. [12]

      Junying LIXinyan CHENXihui DIAOMuhammad YaseenChao CHENHao WANGChuansong QIWei LI . Chiral fluorescent sensor Tb3+@Cd-CP based on camphoric acid for the enantioselective recognition of R- and S-propylene glycol. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2497-2504. doi: 10.11862/CJIC.20240084

    13. [13]

      Fengyu ZhangYali LiangZhangran YeLei DengYunna GuoPing QiuPeng JiaQiaobao ZhangLiqiang Zhang . Enhanced electrochemical performance of nanoscale single crystal NMC811 modification by coating LiNbO3. Chinese Chemical Letters, 2024, 35(5): 108655-. doi: 10.1016/j.cclet.2023.108655

    14. [14]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    15. [15]

      He YaoWenhao JiYi FengChunbo QianChengguang YueYue WangShouying HuangMei-Yan WangXinbin Ma . Copper-catalyzed and biphosphine ligand controlled 3,4-boracarboxylation of 1,3-dienes with carbon dioxide. Chinese Chemical Letters, 2025, 36(4): 110076-. doi: 10.1016/j.cclet.2024.110076

    16. [16]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    17. [17]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    18. [18]

      Yuhang Li Yang Ling Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237

    19. [19]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

    20. [20]

      Neng ShiHaonan JiaJixiang ZhangPengyu LuChenglong CaiYixin ZhangLiqiang ZhangNongyue HeWeiran ZhuYan CaiZhangqi FengTing Wang . Accurate expression of neck motion signal by piezoelectric sensor data analysis. Chinese Chemical Letters, 2024, 35(9): 109302-. doi: 10.1016/j.cclet.2023.109302

Metrics
  • PDF Downloads(0)
  • Abstract views(639)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return