Citation:
Long Zhang, Yang-Ping Wen, Yuan-Yuan Yao, Zi-Fei Wang, Xue-Min Duan, Jing-Kun Xu. Electrochemical sensor based on f-SWCNT and carboxylic group functionalized PEDOT for the sensitive determination of bisphenol A[J]. Chinese Chemical Letters,
;2014, 25(4): 517-522.
doi:
10.1016/j.cclet.2013.12.020
-
A simple, sensitive, and reliable method for the voltammetric determination of bisphenol A (BPA) by using carboxylic group functionalized single-walled carbon nanotubes (f-SWCNT)/carboxylic-functionalized poly(3,4-ethylenedioxythiophene) (PC4) complex modified glassy carbon electrode (GCE) has been successfully developed. The electrochemical behavior of BPA at the surface of the modified electrode is investigated by electrochemical techniques. The cyclic voltammetry results show that the as-prepared electrode exhibits strong catalytic activity toward the oxidation of BPA with a well-defined anodic peak at 0.623 V in PBS (0.1 mol/L, pH 7.0). The surface morphology of the 3D network of composite filmis beneficial for the adsorption of analytes. Under the optimized conditions, the oxidation peak current is proportional to BPA concentration in the range between 0.099 and 5.794 μmol/L (R2 = 0.9989), with a limit of detection of 0.032 μmol/L (S/N = 3). The enhanced performance of the sensor can be attributed to the excellent electrocatalytic property of f-SWCNT and the extraordinary conductivity of PC4. Furthermore, the proposed modified electrode displays high stability and good reproducibility. The good result on the voltammetric determination of BPA also indicates that the asfabricated modified electrode will be a good candidate for the electrochemical determination and analysis of BPA.
-
-
-
[1]
[1] B.S. Rubin, Bisphenol A: an endocrine disruptor with widespread exposure and mulyiple effects, J. Steroid Biochem. 127 (2011) 27-34.
-
[2]
[2] H. Segner, K. Caroll, M. Fenske, et al., Identification of endocrine-disrupting effects in aquatic vertebrates and invertebrates: report from the European IDEA project, Ecotoxicol. Environ. Saf. 54 (2003) 302-314.
-
[3]
[3] E. Carlsen, A. Giwercman, N. Keiding, N.E. Skakkebaek, Declining semen quality and increasing incidence of testicular cancer: is there a common cause, Environ. Health Perspect. 103 (1995) 137-139.
-
[4]
[4] X.H. Long, R. Steinmetz, N. Ben-Jonathan, et al., Strain differences in vaginal responses to the xenoestrogen bisphenol A, Environ. Health Perspect. 108 (2000) 243-247.
-
[5]
[5] J.H. Kang, F. Kondo, Y. Katayama, Human exposure to bisphenol A, Toxicology 226 (2006) 79-89.
-
[6]
[6] T.Y. Chun, J. Gorski, High concentrations of bisphenol A induce cell growth and prolactin secretion in an estrogen-responsive pituitary tumor cell line, Toxicol. Appl. Pharmacol. 162 (2000) 161-165.
-
[7]
[7] T. Goloubkova, M.F.M. Ribeiro, L.P. Rodrigues, A.L. Cecconello, P.M. Spritzer, Effects of xenoestrogen bisphenol A on uterine and pituitary weight, serum prolactin levels and immunoreactive prolactin cells in ovariectomized wistar rats, Arch. Toxicol. 74 (2000) 92-98.
-
[8]
[8] R. Steinmetz, N.A. Mitchner, A. Grant, et al., The xenoestrogen bisphenol A induces growth, differentiation, and c-fos gene expression in the female reproductive tract, Endocrinology 139 (1998) 2741-2747.
-
[9]
[9] M.C. Estévez, R. Galve, F. Sánchez-Baeza, M.P. Marco, Direct competitive enzymelinked immunosorbent assay for the determination of the highly polar shortchain sulfophenyl carboxylates, Anal. Chem. 77 (2005) 5283-5293.
-
[10]
[10] C. Lu, J.G. Li, Y. Yang, J.M. Lin, Determination of bisphenol A based on chemiluminescence from gold (ⅡI)-peroxymonocarbonate, Talanta 82 (2010) 1576-1580.
-
[11]
[11] K. Inoue, K. Kato, Y. Yoshimura, T. Makino, H. Nakazawa, Determination of bisphenol A in human serum by high-performance liquid chromatography with multi-electrode electrochemical detection, J. Chromatogr. B 749 (2000) 17-23.
-
[12]
[12] W.H. Zhao, N. Sheng, R. Zhu, et al., Preparation of dummy template imprinted polymers at surface of silica microparticles for the selective extraction of trace bisphenol A from water samples, J. Hazard. Mater. 179 (2010) 223-229.
-
[13]
[13] M. Liu, Y. Hashi, F.Y. Pan, et al., Automated on-line liquid chromatographyphotodiode array-mass spectrometry method with dilution line for the determination of bisphenol A and 4-octylphenol in serum, J. Chromatogr. A 1133 (2006) 142-148.
-
[14]
[14] R.J.W. Meesters, H.F. Schröder, Simultaneous determination of 4-nonylphenol and bisphenol A in sewage sludge, Anal. Chem. 74 (2002) 3566-3574.
-
[15]
[15] S.C. Cunha, J.O. Fernandes, Quantification of free and total bisphenol A and bisphenol B in human urine by dispersive liquid-liquid microextraction (DLLME) and heart-cutting multidimensional gas chromatography-mass spectrometry (MD-GC.MS), Talanta 83 (2010) 117-125.
-
[16]
[16] H.S. Yin, L. Cui, S.Y. Ai, H. Fan, L.S. Zhu, Electrochemical determination of bisphenol A at Mg-Al-CO3 layered double hydroxide modified glassy carbon electrode, Electrochim. Acta 55 (2010) 603-610.
-
[17]
[17] H.S. Yin, Y.L. Zhou, L. Cui, et al., Electrochemical oxidation behavior of bisphenol A at surfactant/layered double hydroxide modified glassy carbon electrode and its determination, J. Solid State Electrochem. 15 (2011) 167-173.
-
[18]
[18] X.M. Tu, L.S. Yan, X.B. Luo, S.L. Luo, Q.J. Xie, Electroanalysis of bisphenol A at a multiwalled carbon nanotubes-gold nanoparticles modified glassy carbon electrode, Electroanalysis 21 (2009) 2491-2494.
-
[19]
[19] F. Brugnera, M.A.G. Trindade, M.V.B. Zanoni, Detection of bisphenol A on a screenprinted carbon electrode in CATB micellar medium, Anal. Lett. 43 (2010) 2823- 2836.
-
[20]
[20] C.M. Yu, L.L. Gou, X.H. Zhou, N. Bao, H.Y. Gu, Chitosan-Fe3O4 nanocomposite based electrochemical sensors for the determination of bisphenol A, Electrochim. Acta 56 (2011) 9056-9063.
-
[21]
[21] Y. Gao, Y. Cao, D.G. Yang, et al., Sensitivity and selectivity determination of bisphenol A using SWCNT-CD conjugate modified glassy carbon electrode, J. Hazard. Mater. 199-200 (2012) 111-118.
-
[22]
[22] Y.G. Li, Y. Gao, Y. Cao, H.M. Li, Electrochemical sensor for bisphenol A determination based on MWCNT/melamine complex modified GCE, Sens. Actuators B: Chem. 171-172 (2012) 726-733.
-
[23]
[23] Q.X. Wang, Y.H. Wang, S.Y. Liu, et al., Voltammetric detection of bisphenol A by a chitosan-graphene composite modified carbon ionic liquid electrode, Thin Solid Films 520 (2012) 4459-4464.
-
[24]
[24] E. Mazzotta, C. Malitesta, E. Margapoti, Direct electrochemical detection of bisphenol A at PEDOT-modified glassy carbon electrodes, Anal. Bioanal. Chem. 405 (2013) 3587-3592.
-
[25]
[25] T.A. Skotheim, J.R. Reynolds, Handbook of Conducting Polymers, Conjugated Polymers: Theory, Synthesis, Properties, and Characterization, CRC Press, Boca Raton, 2007.
-
[26]
[26] L.B. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, J.R. Reynolds, Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future, Adv. Mater. 12 (2000) 481-494.
-
[27]
[27] L.B. Groenendaal, G. Zotti, P.H. Aubert, S.M. Waybright, J.R. Reynolds, Electrochemistry of poly(3,4-alkylenedioxythiophene) derivatives, Adv. Mater. 15 (2003) 855-879.
-
[28]
[28] A. Elschner, S. Kirchmeyer, W. Lovenich, U. Merker, K. Reuter, PEDOT: Principles and Applications of an Intrinsically Conductive Polymer, CRC Press, London, 2011.
-
[29]
[29] S. Kirchmeyer, K. Reuter, Scientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene), J. Mater. Chem. 15 (2005) 2077-2088.
-
[30]
[30] S.C. Luo, E.M. Ali, N.C. Tansil, et al., Poly(3,4-ethylenedioxythiophene) (PEDOT) nanobiointerfaces: thin, ultrasmooth, and functionalized PEDOT films with in vitro and in vivo biocompatibility, Langmuir 24 (2008) 8071-8077.
-
[31]
[31] E.M. Ali, E.A.B. Kantchev, H.H. Yu, J.Y. Ying, Conductivity shift of polyethylenedioxythiophenes in aqueous solutions from side-chain charge perturbation, Macromolecules 40 (2007) 6025-6027.
-
[32]
[32] Y. Shi, S.C. Luo, W.J. Feng, et al., Work function engineering of electrodes via electropolymerization of ethylenedioxythiophenes and its derivatives, Org. Electron. 9 (2008) 859-863.
-
[33]
[33] H. Xie, S.C. Luo, H.H. Yu, Electric-field-assisted growth of functionalized poly(3,4- ethylenedioxythiophene) nanowires for label-free protein detection, Small 5 (2009) 2611-2617.
-
[34]
[34] S.C. Luo, H. Xie, N.Y. Chen, H.H. Yu, Trinity DNA detection platform by ultrasmooth and functionalized PEDOT biointerfaces, ACS Appl. Mater. Inter. 1 (2009) 1414- 1419.
-
[35]
[35] J. Arias-Pardilla, T.F. Otero, H.H. Yu, Electropolymerization and characterization of COOH-functionalized poly(3,4-ethylenedioxythiophene): ionic exchanges, Electrochim. Acta 56 (2011) 10238-10245.
-
[36]
[36] J. Sekine, S.C. Luo, S. Wang, et al., Functionalized conducting polymer nanodots for enhanced cell capturing: the synergistic effect of capture agents and nanostructures, Adv. Mater. 23 (2011) 4788.
-
[37]
[37] J. Wang, M. Musameh, Y. Lin, Solubilization of carbon nanotubes by nafion toward the preparation of amperometric biosensors, J. Am. Chem. Soc. 125 (2003) 2408- 2409.
-
[38]
[38] W. Wu, H.R. Zhu, L.Z. Fan, et al., Sensitive dopamine recognition by boronic acid functionalized multi-walled carbon nanotubes, Chem. Commun. (2007) 2345- 2347.
-
[39]
[39] J.J. Gooding, R. Wibowo, J.Q. Liu, et al., Protein electrochemistry using aligned carbon nanotube arrays, J. Am. Chem. Soc. 125 (2003) 9006-9007.
-
[40]
[40] M. Trojanowicz, Analytical applications of carbon nanotubes: a review, TrACTrends Anal. Chem. 25 (2006) 480-489.
-
[41]
[41] A. Goldoni, R. Larciprete, L. Petaccia, S. Lizzit, Single-wall carbon nanotube interaction with gases: sample contaminants and environmental monitoring, J. Am. Chem. Soc. 125 (2003) 11329-11333.
-
[42]
[42] J. Wang, Carbon-nanotube based electrochemical biosensors: a review, Electroanalysis 17 (2005) 7-14.
-
[43]
[43] Y. Lu, Y.P. Wen, B.Y. Lu, et al., Electrosynthesis and characterization of poly(hydroxyl- methylated-3,4-ethylenedioxythiophene) film in aqueous micellar solution and its biosensing application, Chin. J. Polym. Sci. 30 (2012) 824-836.
-
[44]
[44] M. Liu, Y.P. Wen, D. Li, et al., A stable sandwich-type amerometric biosensor based on poly(3,4-ethylenedioxythiophen)-single walled carbon nanotubes/ascorbate oxidase/nafion films for detection of L-ascorbic acid, Sens. Actuators B: Chem. 159 (2011) 277-285.
-
[1]
-
-
-
[1]
Qinwei Lu , Jinjie Lu , Juying Lei , Xubiao Luo , Yanbo Zhou . Cyclodextrin-boosted photocatalytic oxidation for efficient bisphenol A removal. Chinese Chemical Letters, 2025, 36(3): 110017-. doi: 10.1016/j.cclet.2024.110017
-
[2]
Yun-Xin Huang , Lin-Qian Yu , Ke-Yu Chen , Hao Wang , Shou-Yan Zhao , Bao-Cheng Huang , Ren-Cun Jin . Biochar with self-doped N to activate peroxymonosulfate for bisphenol-A degradation via electron transfer mechanism: The active edge graphitic N site. Chinese Chemical Letters, 2024, 35(9): 109437-. doi: 10.1016/j.cclet.2023.109437
-
[3]
Jie Zhou , Chuanxiang Zhang , Changchun Hu , Shuo Li , Yuan Liu , Zhu Chen , Song Li , Hui Chen , Rokayya Sami , Yan Deng . Electrochemical aptasensor based on black phosphorus-porous graphene nanocomposites for high-performance detection of Hg2+. Chinese Chemical Letters, 2024, 35(11): 109561-. doi: 10.1016/j.cclet.2024.109561
-
[4]
Shuo Li , Xinran Liu , Yongjie Zheng , Jun Ma , Shijie You , Heshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971
-
[5]
Jiarong Feng , Yejie Duan , Chu Chu , Dezhen Xie , Qiu'e Cao , Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016
-
[6]
Junjun Huang , Ran Chen , Yajian Huang , Hang Zhang , Anran Zheng , Qing Xiao , Dan Wu , Ruxia Duan , Zhi Zhou , Fei He , Wei Yi . Discovery of an enantiopure N-[2-hydroxy-3-phenyl piperazine propyl]-aromatic carboxamide derivative as highly selective α1D/1A-adrenoceptor antagonist and homology modelling. Chinese Chemical Letters, 2024, 35(11): 109594-. doi: 10.1016/j.cclet.2024.109594
-
[7]
Yuanjiao Liu , Xiaoyang Zhao , Songyao Zhang , Yi Wang , Yutuo Zheng , Xinrui Miao , Wenli Deng . Site-selection and recognition of aromatic carboxylic acid in response to coronene and pyridine derivative. Chinese Chemical Letters, 2024, 35(8): 109404-. doi: 10.1016/j.cclet.2023.109404
-
[8]
An Lu , Yuhao Guo , Yi Yan , Lin Zhai , Xiangyu Wang , Weiran Cao , Zijie Li , Zhixia Zhao , Yujie Shi , Yuanjun Zhu , Xiaoyan Liu , Huining He , Zhiyu Wang , Jian-Cheng Wang . Nanomedicine integrating the lipidic derivative of 5-fluorouracil, miriplatin and PD-L1 siRNA for enhancing tumor therapy. Chinese Chemical Letters, 2024, 35(6): 108928-. doi: 10.1016/j.cclet.2023.108928
-
[9]
Junying Zhang , Ruochen Li , Haihua Wang , Wenbing Kang , Xing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216
-
[10]
Zhongxiong Sun , Haili Song , Mei-Huan Zhao , Yijie Zeng , Man-Rong Li . Structural determination and exotic resistive behaviour of α-RuI3 under high-pressure. Chinese Journal of Structural Chemistry, 2025, 44(2): 100429-100429. doi: 10.1016/j.cjsc.2024.100429
-
[11]
Luyan Shi , Ke Zhu , Yuting Yang , Qinrui Liang , Qimin Peng , Shuqing Zhou , Tayirjan Taylor Isimjan , Xiulin Yang . Phytic acid-derivative Co2B-CoPOx coralloidal structure with delicate boron vacancy for enhanced hydrogen generation from sodium borohydride. Chinese Chemical Letters, 2024, 35(4): 109222-. doi: 10.1016/j.cclet.2023.109222
-
[12]
Junying LI , Xinyan CHEN , Xihui DIAO , Muhammad Yaseen , Chao CHEN , Hao WANG , Chuansong QI , Wei LI . Chiral fluorescent sensor Tb3+@Cd-CP based on camphoric acid for the enantioselective recognition of R- and S-propylene glycol. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2497-2504. doi: 10.11862/CJIC.20240084
-
[13]
Fengyu Zhang , Yali Liang , Zhangran Ye , Lei Deng , Yunna Guo , Ping Qiu , Peng Jia , Qiaobao Zhang , Liqiang Zhang . Enhanced electrochemical performance of nanoscale single crystal NMC811 modification by coating LiNbO3. Chinese Chemical Letters, 2024, 35(5): 108655-. doi: 10.1016/j.cclet.2023.108655
-
[14]
Tong Li , Leping Pan , Yan Zhang , Jihu Su , Kai Li , Kuiliang Li , Hu Chen , Qi Sun , Zhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897
-
[15]
He Yao , Wenhao Ji , Yi Feng , Chunbo Qian , Chengguang Yue , Yue Wang , Shouying Huang , Mei-Yan Wang , Xinbin Ma . Copper-catalyzed and biphosphine ligand controlled 3,4-boracarboxylation of 1,3-dienes with carbon dioxide. Chinese Chemical Letters, 2025, 36(4): 110076-. doi: 10.1016/j.cclet.2024.110076
-
[16]
Xueling Yu , Lixing Fu , Tong Wang , Zhixin Liu , Na Niu , Ligang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167
-
[17]
Chao Ma , Cong Lin , Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209
-
[18]
Yuhang Li , Yang Ling , Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237
-
[19]
Tian Cao , Xuyin Ding , Qiwen Peng , Min Zhang , Guoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238
-
[20]
Neng Shi , Haonan Jia , Jixiang Zhang , Pengyu Lu , Chenglong Cai , Yixin Zhang , Liqiang Zhang , Nongyue He , Weiran Zhu , Yan Cai , Zhangqi Feng , Ting Wang . Accurate expression of neck motion signal by piezoelectric sensor data analysis. Chinese Chemical Letters, 2024, 35(9): 109302-. doi: 10.1016/j.cclet.2023.109302
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(640)
- HTML views(10)