Citation: Long Qin, Peng-Fei Duan, Ming-Hua Liu. Interfacial assembly and host-guest interaction of anthracene-conjugated L-glutamate dendron with cyclodextrin at the air/water interface[J]. Chinese Chemical Letters, ;2014, 25(4): 487-490. doi: 10.1016/j.cclet.2013.12.019 shu

Interfacial assembly and host-guest interaction of anthracene-conjugated L-glutamate dendron with cyclodextrin at the air/water interface

  • Corresponding author: Ming-Hua Liu, 
  • Received Date: 24 October 2013
    Available Online: 25 November 2013

    Fund Project:

  • The interfacial assembly of photo-induced dimerization of atypical anthracene-containing amphiphilic dendron and host-guest interaction with γ-cyclodextrin has been investigated. It has been proved that even without long alkyl chain the amphiphilic dendron could still form stable Langmuir monolayer at the air/water interface. Through the host-guest interaction, γ-cyclodextrin can be used to encapsulate two headgroups of amphiphilic dendron in the antiparallel direction. However, the formed host-guest complex was sensitive to the surface pressure. Slight compression of surface pressure led amphiphilic dendron to reassemble into nanofibers through the strong π-π stacking between headgroups. On the other hand, under in situ irradiation, the amphiphilic dendron was stabilized in the cavity of gcyclodextrin through headgroup dimerization and the host-guest complex further irregularly aggregated to nanoparticles. Meanwhile, γ-cyclodextrin, as a silencer, blocked the supramolecular chirality transfer. Our conclusion was demonstrated through UV/vis, FT-IR, CD spectrum and AFM images, respectively.
  • 加载中
    1. [1]

      [1] D.J. Cram, J.M. Cram, Host-guest chemistry, Science 183 (1974) 803-809.

    2. [2]

      [2] L.H. Tong, Cyclodextrin Chemistry: Basis and Application, Scientific Press, Beijing, 2001.

    3. [3]

      [3] M.L. Bender, M. Komiyama, Cyclodextrin Chemistry, Springer-Verlag, Berlin; Heidelberg; New York, 1978.

    4. [4]

      [4] S. Jozsef, Cyclodextrin Technology, Kluwer Academic Publishers, Dordrecht; Boston; London, 1988.

    5. [5]

      [5] J. Szijfli, T. Osa, Comprehensive Supramolecular Chemistry: Cyclodextrin, Pergamon, Oxford, UK, 1996.

    6. [6]

      [6] F. Hapiot, S. Tilloy, E. Monflier, Cyclodextrins as supramolecular hosts for organometallic complexes, Chem. Rev. 106 (2006) 767-781.

    7. [7]

      [7] G. Wenz, B.H. Han, A. Muller, Cyclodextrin rotaxanes and polyrotaxanes, Chem. Rev. 106 (2006) 782-817.

    8. [8]

      [8] Y.A. Zhdanov, Y.E. Alekseev, E.V. Kompantseva, Induced optical-activity in cyclodextrin complexes, Russ. Chem. Rev. 61 (1992) 563-575.

    9. [9]

      [9] A. Ueno, I. Suzuki, T. Osa, Host-guest sensory systems for detecting organic compounds by pyrene excimer fluorescence, Anal. Chem. 62 (1990) 2461-2466.

    10. [10]

      [10] A. Munoz de la Pena, T. Ndou, J.B. Zung, I.M. Warner, Stoichiometry and formation constants of pyrene inclusion complexes with beta- and gamma-cyclodextrin, J. Phys. Chem. 95 (1991) 3330-3334.

    11. [11]

      [11] F. Vogtle, W.M. Muller, Complexes of gamma-cyclodextrin with crown ethers, cryptands, coronates and cryptates, Angew. Chem. Int. Ed. 18 (1979) 623-624.

    12. [12]

      [12] W. Saenger, Cyclodextrin inclusion compounds in research and industry, Angew. Chem. Int. Ed. 19 (1980) 344-362.

    13. [13]

      [13] F.J. Duan, J.C. Ding, H.J. Deng, et al., An approach to the Paal-Knorr pyrroles synthesis in the presence of b-cyclodextrin in aqueous media, Chin. Chem. Lett. 24 (2013) 706-793.

    14. [14]

      [14] D.R. Patil, D.S. Dalal, Biomimetic approach for the synthesis of N,N0-diarylsubstituted formamidines catalyzed by b-cyclodextrin in water, Chin. Chem. Lett. 23 (2012) 1125-1128.

    15. [15]

      [15] A. Nakamura, Y. Inoue, electrostatic manipulate of enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylate with γ-cyclodextrin cavity through chemical modification, J. Am. Chem. Soc. 127 (2005) 5338-5339.

    16. [16]

      [16] C. Yang, T. Mori, Y. Inoue, et al., Highly stereoselective photocyclodimerization of a-cyclodextrin-appended anthracene mediated by γ-cyclodextrin and cucurbit[ 8]uril: a dramatic steric effect operating outside the binding site, J. Am. Chem. Soc. 130 (2008) 8574-8575.

    17. [17]

      [17] D.A. Lightner, J.K. Gawronski, K. Gawronska, Conformational enantiomerism in bilirubin. Selection by cyclodextrins, J. Am. Chem. Soc. 107 (1985) 2456-2461.

    18. [18]

      [18] C. Yang, Recent progress in supramolecular chiral photochemistry, Chin. Chem. Lett. 24 (2013) 437-441.

    19. [19]

      [19] Y.P. Wang, N. Ma, Z.Q. Wang, X. Zhang, Photocontrolled reversible supramolecular assemblies of an azobenzene-containing surfactant with a-cyclodextrin, Angew. Chem. Int. Ed. 46 (2007) 2823-2826.

    20. [20]

      [20] Y. Liu, Y.L. Zhao, H.Y. Zhang, Recognition-induced supramolecular porous nanosphere formation from cyclodextrin conjugated by cholic acid, Langmuir 22 (2006) 3434-3438.

    21. [21]

      [21] R. Kataky, E. Morgan, Potential of enzyme mimics in biomimetic sensors: a modified-cyclodextrin as a dehydrogenase enzyme mimic, Biosens. Bioelectron. 18 (2003) 1407-1417.

    22. [22]

      [22] K.B. Blodgett, Films built by depositing successive monomolecular layers on a solid surface, J. Am. Chem. Soc. 57 (1935) 1007-1022.

    23. [23]

      [23] G.G. Roberts, Langmuir-Blodgett Films, Plenum, New York, 1990.

    24. [24]

      [24] M.C. Petty, Langmuir-Blodgett Films: An Introduction, Cambridge University Press, Cambridge, 1996.

    25. [25]

      [25] D. Mobius, Molecular cooperation in monolayer organizates, Acc. Chem. Res. 14 (1981) 63-68.

    26. [26]

      [26] Y.G. Li, M.H. Liu, Induced chirality of supramolecular assemblies of some amphiphiles with b-cyclodextrin through the interaction at the air/water interface, J. Colloid Interface Sci. 306 (2007) 386-390.

    27. [27]

      [27] P.F. Duan, M.H. Liu, Self-assembly of L-glutamate based aromatic dendrons through the air/water interface: morphology, photodimerization and supramolecular chirality, Phys. Chem. Chem. Phys. 12 (2010) 4383-4389.

    28. [28]

      [28] P.F. Duan, L. Qin, M.H. Liu, Langmuir-Blodgett films and chiroptical switch of an azobenzene-containing dendron regulated by the in situ host-guest reaction at the air/water interface, Langmuir 27 (2011) 1326-1331.

    29. [29]

      [29] P.F. Duan, M.H. Liu, Design and self-assembly of L-glutamate-based aromatic dendrons as ambidextrous gelators of water and organic solvents, Langmuir 25 (2009) 8706-8713.

    30. [30]

      [30] C. Spitz, S. Dähne, A. Ouart, H.W. Abraham, Proof of chirality of J-aggregates spontaneously and enantioselectively generated from achiral dyes, J. Phys. Chem. B 104 (2000) 8664-8669.

    31. [31]

      [31] H. Bouas-Laurent, A. Castellan, J.P. Desvergne, R. Lapouyade, Photodimerization of anthracenes in fluid solution: structural aspects, Chem. Soc. Rev. 29 (2000) 43-55.

    32. [32]

      [32] H. Bouas-Laurent, A. Castellan, J.P. Desvergne, Photodimerization of anthracenes in fluid solutions: (part 2) mechanistic aspects of the photocycloaddition and of the photochemical and thermal cleavage, Chem. Soc. Rev. 30 (2001) 248-263.

    33. [33]

      [33] Q.M. Ji, R. Iwaura, T. Shimizu, Regulation of silica nanotube diameters: sol-gel transcription using solvent-sensitive morphological change of peptidic lipid nanotubes as templates, Chem. Mater. 19 (2007) 1329-1334.

  • 加载中
    1. [1]

      Jun-Yi Wang Jue-Yu Bao Zheng-Guang Wu Zheng-Yin Du Xunwen Xiao Xu-Feng Luo . Recent progress in steric modulation of MR-TADF materials and doping concentration independent OLEDs with narrowband emission. Chinese Journal of Structural Chemistry, 2025, 44(1): 100451-100451. doi: 10.1016/j.cjsc.2024.100451

    2. [2]

      Hao SunShengke LiQian LiuMinzan ZuoXueqi TianKaiya WangXiao-Yu Hu . Supramolecular prodrug vesicles for selective antimicrobial therapy employing a chemo-photodynamic strategy. Chinese Chemical Letters, 2025, 36(3): 109999-. doi: 10.1016/j.cclet.2024.109999

    3. [3]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    4. [4]

      Hui-Juan WangWen-Wen XingZhen-Hai YuYong-Xue LiHeng-Yi ZhangQilin YuHongjie ZhuYao-Yao WangYu Liu . Cucurbit[7]uril confined phenothiazine bridged bis(bromophenyl pyridine) activated NIR luminescence for lysosome imaging. Chinese Chemical Letters, 2024, 35(6): 109183-. doi: 10.1016/j.cclet.2023.109183

    5. [5]

      Cheng HeRenlan HuangLingling WeiQiuhui HeJinbo LiuJiao ChenGe GaoCheng YangWanhua Wu . Uncovering the mask of sensitizers to switch on the TTA-UC emission by supramolecular host-guest complexation. Chinese Chemical Letters, 2025, 36(4): 110103-. doi: 10.1016/j.cclet.2024.110103

    6. [6]

      Siwei WangWei-Lei ZhouYong Chen . Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior. Chinese Chemical Letters, 2024, 35(12): 110261-. doi: 10.1016/j.cclet.2024.110261

    7. [7]

      Bingbing ShiYuchun WangYi ZhouXing-Xing ZhaoYizhou LiNuoqian YanWen-Juan QuQi LinTai-Bao Wei . A supramolecular oligo[2]rotaxane constructed by orthogonal platinum(Ⅱ) metallacycle and pillar[5]arene-based host–guest interactions. Chinese Chemical Letters, 2024, 35(10): 109540-. doi: 10.1016/j.cclet.2024.109540

    8. [8]

      Jie YangXin-Yue LouDihua DaiJingwei ShiYing-Wei Yang . Desymmetrized pillar[8]arenes: High-yield synthesis, functionalization, and host-guest chemistry. Chinese Chemical Letters, 2025, 36(1): 109818-. doi: 10.1016/j.cclet.2024.109818

    9. [9]

      Jianmei Guo Yupeng Zhao Lei Ma Yongtao Wang . Ultra-long room temperature phosphorescence, intrinsic mechanisms and application based on host-guest doping systems. Chinese Journal of Structural Chemistry, 2024, 43(9): 100335-100335. doi: 10.1016/j.cjsc.2024.100335

    10. [10]

      Wenlong LiFeishi ShanQingdong BaoQinghua LiHua GaoLeyong Wang . Supramolecular assembly nanoparticle for trans-epithelial treatment of keratoconus. Chinese Chemical Letters, 2024, 35(10): 110060-. doi: 10.1016/j.cclet.2024.110060

    11. [11]

      Jiayao Li Xinru Peng Shiwei Yin Changwei Wang Yirong Mo . Metastability of π-π stacking between the closed-shell ions of like charges. Chinese Journal of Structural Chemistry, 2024, 43(5): 100213-100213. doi: 10.1016/j.cjsc.2023.100213

    12. [12]

      Qinwei LuJinjie LuJuying LeiXubiao LuoYanbo Zhou . Cyclodextrin-boosted photocatalytic oxidation for efficient bisphenol A removal. Chinese Chemical Letters, 2025, 36(3): 110017-. doi: 10.1016/j.cclet.2024.110017

    13. [13]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    14. [14]

      Xingwen Cheng Haoran Ren Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306

    15. [15]

      Zhu ShuXin LeiYeye AiKe ShaoJianliang ShenZhegang HuangYongguang Li . ATP-induced supramolecular assembly based on chromophoric organic molecules and metal complexes. Chinese Chemical Letters, 2024, 35(11): 109585-. doi: 10.1016/j.cclet.2024.109585

    16. [16]

      Qian RenXue DaiRan CenYang LuoMingyang LiZiyun ZhangQinghong BaiZhu TaoXin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022

    17. [17]

      Ran CenYan-Yan TangLi-Xia ChenZhu TaoXin Xiao . A novel supramolecular assembly based on nor-seco-cucurbit[10]uril for spermine sensing and artificial light-harvesting. Chinese Chemical Letters, 2025, 36(1): 109744-. doi: 10.1016/j.cclet.2024.109744

    18. [18]

      Yan FanJiao TanCuijuan ZouXuliang HuXing FengXin-Long Ni . Unprecedented stepwise electron transfer and photocatalysis in supramolecular assembly derived hybrid single-layer two-dimensional nanosheets in water. Chinese Chemical Letters, 2025, 36(4): 110101-. doi: 10.1016/j.cclet.2024.110101

    19. [19]

      Jieqiong XuWenbin ChenShengkai LiQian ChenTao WangYadong ShiShengyong DengMingde LiPeifa WeiZhuo Chen . Organic stoichiometric cocrystals with a subtle balance of charge-transfer degree and molecular stacking towards high-efficiency NIR photothermal conversion. Chinese Chemical Letters, 2024, 35(10): 109808-. doi: 10.1016/j.cclet.2024.109808

    20. [20]

      Wenjia WangXingyue HeXiaojie WangTiantian ZhaoOsamu MuraokaGenzoh TanabeWeijia XieTianjiao ZhouLei XingQingri JinHulin Jiang . Glutathione-depleted cyclodextrin pseudo-polyrotaxane nanoparticles for anti-inflammatory oxaliplatin (Ⅳ) prodrug delivery and enhanced colorectal cancer therapy. Chinese Chemical Letters, 2024, 35(4): 108656-. doi: 10.1016/j.cclet.2023.108656

Metrics
  • PDF Downloads(0)
  • Abstract views(677)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return