Citation:
Bagher Mohammadi, Mehdi Adib. Microwave assisted one-pot tandem three-component synthesis of 2,4,5-triary1-2-4-dihydro-3H-1,2,4-triazol-3-one derivatives[J]. Chinese Chemical Letters,
;2014, 25(4): 553-556.
doi:
10.1016/j.cclet.2013.12.018
-
This work described a one-pot tandem three-component synthesis of 2,4,5-triaryl-2,4-dihydro-3H-1,2,4-triazol-3-ones using a simple reaction between phenylhydrazines, benzaldehydes and phenyl isocyanates under microwave irradiation and solvent-free conditions in good to excellent yields.
-
Keywords:
- Tandem multicomponent reactions,
- Solvent free,
- Heterocycle,
- Microwave,
- Triazole
-
-
-
[1]
[1] J.E. Biggs-Houck, A. Younai, J.T. Shaw, Recent advances in multicomponent reactions for diversity-oriented synthesis, Curr. Opin. Chem. Biol. 14 (2010) 371-382.
-
[2]
[2] B.B. Touré, D.G. Hall, Natural product synthesis using multicomponent reaction strategies, Chem. Rev. 109 (2009) 4439-4486.
-
[3]
[3] J.Y. Lu, X.Y. Gong, H.J. Yang, H. Fu, Concise copper-catalyzed one-pot tandem synthesis of benzimidazo[1,2-b]isoquinolin-11-one derivatives, Chem. Commun. 46 (2010) 4172-4174.
-
[4]
[4] Y.G. Zhu, C.W. Zhai, Y.L. Yue, L.P. Yang, W.H. Hu, One-pot three-component tandem reaction of diazo compounds with anilines and unsaturated ketoesters: a novel synthesis of 2,3-dihydropyrrole derivatives, Chem. Commun. 11 (2009) 1362-1364.
-
[5]
[5] B. Ganem, Strategies for innovation in multicomponent reaction design, Acc. Chem. Res. 42 (2009) 463-472.
-
[6]
[6] H. Bienayme, C. Hulme, G. Oddon, P. Schmitt, Maximizing synthetic efficiency: multi-component transformations lead the way, Chem. Eur. J. 6 (2000) 3321- 3329.
-
[7]
[7] A. Domling, I. Ugi, Multicomponent reactions with isocyanides, Angew. Chem. Int. Ed. 39 (2000) 3168-3210.
-
[8]
[8] J.P. Zhu, Recent developments in the isonitrile-based multicomponent synthesis of heterocycles, Eur. J. Org. Chem. 7 (2003) 1133-1144.
-
[9]
[9] D.J. Ramon, M. Yus, Asymmetric multicomponent reactions (AMCRs): the new frontier, Angew. Chem. Int. Ed. 44 (2005) 1602-1634.
-
[10]
[10] W.T. Ashton, L.L. Chang, K.L. Flanagan, et al., Triazolinone biphenylsulfonamide derivatives as orally active angiotensin Ⅱ antagonists with potent AT1 receptor affinity and enhanced AT2 affinity, J. Med. Chem. 37 (1994) 2808-2824.
-
[11]
[11] N. Demirbas, A. Demirbas, S.A. Karaoglu, Synthesis and biological activities of new 1,2,4-triazole-3-one derivatives, Russ. J. Bioorg. Chem. 31 (2005) 387-397.
-
[12]
[12] N. Demirbasş, R. Ugurluoglu, A. Demirbasş, Synthesis of 3-alkyl(aryl)-4-alkylidenamino- 4,5-dihydro-1H-1,2,4-triazol-5-ones and 3-alkyl-4-alkylamino-4,5- dihydro-1H-1,2,4-triazol-5-ones as antitumor agents, Bioorg. Med. Chem. 10 (2002) 3717-3723.
-
[13]
[13] N.S. Khalil, Efficient synthesis of novel 1,2,4-triazole fused acyclic and 21-28 membered macrocyclic and/or lariat macrocyclic oxaazathia crown compounds with potential antimicrobial activity, Eur. J. Med. Chem. 45 (2010) 5265-5277.
-
[14]
[14] J.M. Kane, B.M. Baron, M.W. Dudley, et al., 2,4-Dihydro-3H-1,2,4-triazol-3-ones as anticonvulsant agents, J. Med. Chem. 33 (1990) 2772-2777.
-
[15]
[15] C.Q. Shen, X.Y. Che, W.Y. Wang, et al., Design and synthesis of novel triazole antifungal derivatives by structure-based bioisosterism, Eur. J. Med. Chem. 46 (2011) 5276-5282.
-
[16]
[16] G. Aperis, E. Mylonakis, Newer triazole antifungal agents: pharmacology, spectrum, clinical efficacy and limitations, Expert Opin. Investig. Drugs 15 (2006) 579- 602.
-
[17]
[17] A. Davoodnia, M. Bakavoli, M. Soleimany, H. Behmadi, A new one-pot neat synthesis of 1,2,4-triazol-3-ones through 4-(N,N-dimethylamino) pyridine (DMAP) catalyzed cyclocondensation of ethyl carbazate with aryl nitriles, Chin. Chem. Lett. 19 (2008) 685-688.
-
[18]
[18] H. Gadegoni, S. Manda, Synthesis and screening of some novel substituted indoles contained 1,3,4-oxadiazole and 1,2,4-triazole moiety, Chin. Chem. Lett. 24 (2013) 127-130.
-
[19]
[19] H. Tang, C. Zheng, X. Ren, et al., Synthesis and biological evaluation of novel triazole derivatives as antifungal agents, Chin. Chem. Lett. 24 (2013) 219-222.
-
[20]
[20] P.Z. Zhang, S.F. Zhou, T.R. Li, L. Jiang, Efficient synthesis and in vitro antifungal activity of 1H-benzimidazol-1-yl acetates/propionates containing 1H-1,2,4-triazole moiety, Chin. Chem. Lett. 23 (2012) 1381-1384.
-
[21]
[21] X. Qin, H.B. Yu, H. Dai, et al., Synthesis and plant-growth regulatory activities of novel imine derivatives containing 1H-1,2,4-triazole and thiazole rings, Chin. Chem. Lett. 21 (2010) 283-286.
-
[22]
[22] J.R. Kavaji, O. Kotresh, B.V. Badami, Chemical reactivity of 3-aryl-5-methyl-1,3,4- oxadiazolin-2-ones towards nitrogen nucleophiles, J. Chem. Res. (2003) 275-278.
-
[23]
[23] I. Kawasaki, A. Domen, S. Kataoka, et al., A new synthetic method for substituted 2,4-dihydro-3H-1,2,4-triazol-3-ones and 3-thiones via 1,4-dialkyl-5-phenylthio- 1H-1,2,4-triazolium salts, Heterocycles 60 (2003) 351-363.
-
[24]
[24] J.Z. Deng, C.S. Burgey, A novel and efficient synthesis of 2,5-substituted 1,2,4- triazol-3-ones, Tetrahedron Lett. 46 (2005) 7993-7996.
-
[25]
[25] H. Chouaieb, M. Ben Mosbah, M. Kossentini, M. Salem, Novel method for the synthesis of 1,2,4-triazoles and 1,2,4-triazol-3-ones, Synth. Commun. 33 (2003) 3861-3868.
-
[26]
[26] S. Kamiya, K. Yamaguchi, M. Miyahara, N. Miyata, Cyclization of 1-aryl-1-nitroso- 3-(2-pyridylmethyl)ureas to1-aryl-5-(2-pyridyl)-2,4-dihydro-1,2,4-triazolo-3- ones, Chem. Pharm. Bull. 38 (1990) 3226-3229.
-
[27]
[27] M. Chen, X.F. Wang, S.S. Wang, et al., Synthesis, characterization and fungicidal activities of novel fluorinated 3,5-disubstituted-4H-1,2,4-triazol-4-amines, J. Fluor. Chem. 135 (2012) 323-329.
-
[28]
[28] S.R. Devineni, S. Doddaga, R. Donka, N.R. Chamarthi, CeCl3·7H2O-SiO2: catalyst promoted microwave assisted neat synthesis, antifungal and antioxidant activities of a-diaminophosphonates, Chin. Chem. Lett. 24 (2013) 759-763.
-
[29]
[29] H. Zare, M.M. Ghanbari, M. Jamali, A. Aboodi, A novel and efficient strategy for the synthesis of various carbamates using carbamoyl chlorides under solvent-free and grinding conditions using microwave irradiation, Chin. Chem. Lett. 23 (2012) 883-886.
-
[30]
[30] B. Mohammadi, M. Shafieey, H. Kazemi, A. Ramazani, Pseudo four-component and regioselective synthesis of 4-amino-3,5-dicyano-6-arylphthalates using triethylamine catalyst, Chin. Chem. Lett. 24 (2013) 497-499.
-
[1]
-
-
-
[1]
Qiang Cao , Xue-Feng Cheng , Jia Wang , Chang Zhou , Liu-Jun Yang , Guan Wang , Dong-Yun Chen , Jing-Hui He , Jian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759
-
[2]
Meiling Xu , Xinyang Li , Pengyuan Liu , Junjun Liu , Xiao Han , Guodong Chai , Shuangling Zhong , Bai Yang , Liying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860
-
[3]
Xinyu Tian , Jiaxiang Guo , Zeyi Li , Shihou Sheng , Tianyu Zhang , Xianfei Li , Chuandong Dou . Control over electronic structures of organic diradicaloids via precise B/O-heterocycle fusion. Chinese Chemical Letters, 2025, 36(1): 110174-. doi: 10.1016/j.cclet.2024.110174
-
[4]
Qinwen Zheng , Xin Liu , Lintao Tian , Yi Zhou , Libing Liao , Guocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771
-
[5]
Shiqi Xu , Zi Ye , Shuang Shang , Fengge Wang , Huan Zhang , Lianguo Chen , Hao Lin , Chen Chen , Fang Hua , Chong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034
-
[6]
Yue Mao , Zhonghang Chen , Tiankai Sun , Wenyue Cui , Peng Cheng , Wei Shi . Luminescent coordination polymers with mixed carboxylate and triazole ligands for rapid detection of chloroprene metabolite. Chinese Journal of Structural Chemistry, 2024, 43(9): 100353-100353. doi: 10.1016/j.cjsc.2024.100353
-
[7]
Lang Gao , Cen Zhou , Rui Wang , Feng Lan , Bohang An , Xiaozhou Huang , Xiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832
-
[8]
Weichen WANG , Chunhua GONG , Junyong ZHANG , Yanfeng BI , Hao XU , Jingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415
-
[9]
Jing LIANG , Qian WANG , Junfeng BAI . Synthesis and structures of cdq-topological quaternary and (4, 4, 8)-c topological quinary Zn-MOFs with both oxalic acid and triazole ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2186-2192. doi: 10.11862/CJIC.20240177
-
[10]
Wei-Tao Dou , Qing-Wen Zeng , Yan Kang , Haidong Jia , Yulian Niu , Jinglong Wang , Lin Xu . Construction and application of multicomponent fluorescent droplets. Chinese Chemical Letters, 2025, 36(1): 109995-. doi: 10.1016/j.cclet.2024.109995
-
[11]
Jun-Ting Mo , Zheng Wang . Achieving tunable long persistent luminescence in metal organic halides based on pyridine solvent. Chinese Chemical Letters, 2024, 35(9): 109360-. doi: 10.1016/j.cclet.2023.109360
-
[12]
Jindian Duan , Xiaojuan Ding , Pui Ying Choy , Binyan Xu , Luchao Li , Hong Qin , Zheng Fang , Fuk Yee Kwong , Kai Guo . Oxidative spirolactonisation for modular access of γ-spirolactones via a radical tandem annulation pathway. Chinese Chemical Letters, 2024, 35(10): 109565-. doi: 10.1016/j.cclet.2024.109565
-
[13]
Peng Wang , Daijie Deng , Suqin Wu , Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199
-
[14]
Mei Peng , Wei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899
-
[15]
Shehla Khalid , Muhammad Bilal , Nasir Rasool , Muhammad Imran . Photochemical reactions as synthetic tool for pharmaceutical industries. Chinese Chemical Letters, 2024, 35(9): 109498-. doi: 10.1016/j.cclet.2024.109498
-
[16]
Cheng Guo , Xiaoxiao Zhang , Xiujuan Hong , Yiqiu Hu , Lingna Mao , Kezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867
-
[17]
Yuhao Guo , Na Li , Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320
-
[18]
Kongchuan Wu , Dandan Lu , Jianbin Lin , Ting-Bin Wen , Wei Hao , Kai Tan , Hui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906
-
[19]
Shengkai Li , Yuqin Zou , Chen Chen , Shuangyin Wang , Zhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147
-
[20]
Ying-Di Hao , Zhi-Qian Lin , Xiao-Yu Guo , Jiao Liang , Can-Kun Luo , Qian-Tao Wang , Li Guo , Yong Wu . Rhodium-catalyzed Doyle-Kirmse rearrangement reactions of sulfoxoniun ylides. Chinese Chemical Letters, 2024, 35(4): 108834-. doi: 10.1016/j.cclet.2023.108834
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(610)
- HTML views(16)