Citation: Lei-Xiao Yu, Yang Liu, Si-Chong Chen, Yue Guan, Yu-Zhong Wang. Reversible photoswitching aggregation and dissolution of spiropyranfunctionalized copolymer and light-responsive FRET process[J]. Chinese Chemical Letters, ;2014, 25(3): 389-396. doi: 10.1016/j.cclet.2013.12.014 shu

Reversible photoswitching aggregation and dissolution of spiropyranfunctionalized copolymer and light-responsive FRET process

  • Corresponding author: Si-Chong Chen,  Yu-Zhong Wang, 
  • Received Date: 11 November 2013
    Available Online: 6 December 2013

    Fund Project:

  • Well-defined, reversibly light-responsive amphiphilic diblock copolymer grafted with spiropyran, was prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization. The copolymer self-assembles into polymeric micelles in water and exhibits reversible dissolution and re-aggregation characteristics upon ultraviolet (UV) and visible (Vis)-light irradiation. The fluorescence response of spiropyran immobilized onto the copolymer was light switchable. When nitrobenzoxadiazolyl derivative (NBD) dyes are encapsulated into the core of the micelles, a reversible, light-responsive, dual-color fluorescence resonance energy transfer (FRET) system is constructed and processed, which is well regulated by alternatively UV/vis irradiation. We anticipate these photoswitchable and FRET lighting up nanoparticles will be useful in drug delivery and cell imaging or tracking synchronously.
  • 加载中
    1. [1]

      [1] Y.L. Yu, M. Nakano, T. Ikeda, Photomechanics: directed bending of a polymer film by light, Nature 425 (2003) 145.

    2. [2]

      [2] H. Lee, W. Wu, J.K. Oh, et al., Light-induced reversible formation of polymeric micelles, Angew. Chem. Int. Ed. 46 (2007) 2453-2457.

    3. [3]

      [3] V.K. Kotharangannagari, A. Sànchez-Ferrer, J. Ruokolainen, R. Mezzenga, Photoresponsive reversible aggregation and dissolution of rod-coil polypeptide diblock copolymers, Macromolecules 44 (2011) 4569-4573.

    4. [4]

      [4] S. Dai, P. Ravi, K.C. Tam, pH-responsive polymers: synthesis, properties and applications, Soft Matter 4 (2008) 435-449.

    5. [5]

      [5] S. Yusa, M. Sugahara, T. Endo, Y. Morishima, Preparation and characterization of a pH-responsive nanogel based on a photo-cross-linked micelle formed from block copolymers with controlled structure, Langmuir 25 (2009) 5258-5265.

    6. [6]

      [6] G. Wu, S.C. Chen, Q. Zhan, Y.Z. Wang, Well-defined amphiphilic biodegradable comb-like graft copolymers: their unique architecture-determined LCST and UCST thermoresponsivity, Macromolecules 44 (2011) 999-1008.

    7. [7]

      [7] A.P. Vogt, B.S. Sumerlin, Temperature and redox responsive hydrogels from ABA triblock copolymers prepared by RAFT polymerization, Soft Matter 5 (2009) 2347-2351.

    8. [8]

      [8] J.M. Hu, G.Y. Zhang, Y.H. Geng, S.Y. Liu, Micellar nanoparticles of coil-rod-coil triblock copolymers for highly sensitive and ratiometric fluorescent detection of fluoride Ions, Macromolecules 44 (2011) 8207-8214.

    9. [9]

      [9] C.J. Chen, Q. Jin, G.Y. Liu, et al., Reversibly light-responsive micelles constructed via a simple modification of hyperbranched polymers with chromophores, Polymer 53 (2012) 3695-3703.

    10. [10]

      [10] C.Q. Huang, Y. Wang, C.Y. Hong, C.Y. Pan, Spiropyran-based polymeric vesicles: preparation and photochromic properties, Macromol. Rapid Commun. 32 (2011) 1174-1179.

    11. [11]

      [11] C.S. Brazel, Magnetothermally-responsive nanomaterials: combining magnetic nanostructures and thermally-sensitive polymers for triggered drug release, Pharm. Res. 26 (2009) 644-656.

    12. [12]

      [12] M. Irie, Photoresponsive polymers. Reversible bending of rod-shaped acrylamide gels in an electric field, Macromolecules 19 (1986) 2890-2892.

    13. [13]

      [13] H.T.T. Duong, C.P. Marquis, M. Whittaker, T.P. Davis, C. Boyer, Acid degradable and biocompatible polymeric nanoparticles for the potential codelivery of therapeutic agents, Macromolecules 44 (2011) 8008-8019.

    14. [14]

      [14] Y.H. Wang, M. Zheng, F.H. Meng, et al., Branched polyethylenimine derivatives with reductively cleavable periphery for safe and efficient in vitro gene transfer, Biomacromolecules 12 (2011) 1032-1040.

    15. [15]

      [15] T.A. Darwish, R.A. Evans, M. James, et al., CO2 triggering and controlling orthogonally multiresponsive photochromic systems, J. Am. Chem. Soc. 132 (2010) 10748-10755.

    16. [16]

      [16] D.H. Han, X. Tong, O. Boissière, Y. Zhao, General strategy for making CO2-switchable polymers, ACS Macro Lett. 1 (2012) 57-61.

    17. [17]

      [17] J.P. Magnusson, A. Khan, G. Pasparakis, et al., Ion-sensitive "isothermal" responsive polymers prepared in water, J. Am. Chem. Soc. 130 (2008) 10852-10853.

    18. [18]

      [18] D.B. Liu, W.W. Chen, K. Sun, et al., Resettable, multi-readout logic gates based on controllably reversible aggregation of gold nanoparticles, Angew. Chem. Int. Ed. 50 (2011) 4103-4107.

    19. [19]

      [19] M. Irie, T. Fukaminato, T. Sasaki, N. Tamai, T. Kawai, Organic chemistry: a digital fluorescent molecular photoswitch, Nature 420 (2002) 759-760.

    20. [20]

      [20] Y.M. Li, Y.F. Qian, T. Liu, G.Y. Zhang, S.Y. Liu, Light-triggered concomitant enhancement of magnetic resonance imaging contrast performance and drug release rate of functionalized amphiphilic diblock copolymer micelles, Biomacromolecules 13 (2012) 3877-3886.

    21. [21]

      [21] S. Wang, Y. Song, L.J. Jiang, Photoresponsive surfaces with controllable wettability, Photochem. Photobiol. C 8 (2007) 18-29.

    22. [22]

      [22] M.Q. Zhu, G.F. Zhang, C. Li, et al., Reversible two-photon photoswitching and twophoton imaging of immunofunctionalized nanoparticles targeted to cancer cells, J. Am. Chem. Soc. 133 (2011) 365-372.

    23. [23]

      [23] A. Nayak, H. Liu, G. Belfort, An optically reversible switching membrane surface, Angew. Chem. Int. Ed. 45 (2006) 4094-4098.

    24. [24]

      [24] Y. Zhao, Light-responsive block copolymer micelles, Macromolecules 45 (2012) 3647-3657.

    25. [25]

      [25] X.K. Liu, M. Jiang, Optical switching of self-assembly: micellization and micellehollow-sphere transition of hydrogen-bonded polymers, Angew. Chem. Int. Ed. 45 (2006) 3846-3850.

    26. [26]

      [26] L. Ming, L.Y. Gu, Q. Zhang, M.Z. Xue, Y.G. Liu, Preparation and study of photoswitchable fluorescence nanoparticles based on spirobenzopyran, Chin. Chem. Lett. 24 (2013) 1014-1018.

    27. [27]

      [27] J.L. Mynar, A.P. Goodwin, J.A. Cohen, et al., Two-photon degradable supramolecular assemblies of linear-dendritic copolymers, Chem. Commun. 20 (2007) 2081-2082.

    28. [28]

      [28] D.H. Han, X. Tong, Y. Zhao, Fast photodegradable block copolymer micelles for burst release, Macromolecules 44 (2011) 437-439.

    29. [29]

      [29] Y. Zhao, J. Bertrand, X. Tong, Y. Zhao, Photo-cross-linkable polymer micelles in hydrogen-bonding-built layer-by-layer films, Langmuir 25 (2009) 13151-13157.

    30. [30]

      [30] J.T. Lai, D. Filla, R. Shea, Functional polymers from novel carboxyl-terminated trithiocarbonates as highly efficient RAFT agents, Macromolecules 35 (2002) 6754-6756.

    31. [31]

      [31] D.J. Chung, Y. Ito, Y. Imanishi, Preparation of porous membranes grafted with poly (spiropyran-containing methacrylate) and photocontrol of permeability, J. Appl. Polym. Sci. 51 (1994) 2027-2033.

    32. [32]

      [32] S.I. Yusa, Y. Yokoyama, Y. Morishima, Synthesis of oppositely charged block copolymers of poly(ethylene glycol) via reversible addition-fragmentation chain transfer radical polymerization and characterization of their polyion complex micelles in water, Macromolecules 42 (2009) 376-383.

    33. [33]

      [33] Y.K. Chong, J. Krstina, T.P.T. Le, et al., Thiocarbonylthio compounds [SC(Ph)S-R] in free radical polymerization with reversible addition-fragmentation chain transfer (RAFT polymerization). Role of the free-radical leaving group (R), Macromolecules 36 (2003) 2256-2272.

    34. [34]

      [34] Y. Cao, X.X. Zhu, J.T. Luo, H.Y. Liu, Effects of substitution groups on the RAFT polymerization of N-alkylacrylamides in the preparation of thermosensitive block copolymers, Macromolecules 40 (2007) 6481-6488.

    35. [35]

      [35] K. Sumaru, M. Kameda, T. Kanamori, T. Shinbo, Characteristic phase transition of aqueous solution of poly (N-isopropylacrylamide) functionalized with spirobenzopyran, Macromolecules 37 (2004) 4949-4955.

    36. [36]

      [36] A.Y. Bobrovsky, N.I. Boiko, V.P. Shibaev, Photosensitive cholesteric copolymers with spiropyran-containing side groups: novel materials for optical data recording, Adv. Mater. 11 (1999) 1025-1028.

    37. [37]

      [37] D.S. Achilleos, M. Vamvakaki, Multiresponsive spiropyran-based copolymers synthesized by atom transfer radical polymerization, Macromolecules 43 (2010) 7073-7081.

    38. [38]

      [38] M. Piech, N.S. Bell, Controlled synthesis of photochromic polymer brushes by atom transfer radical polymerization, Macromolecules 39 (2006) 915-922.

    39. [39]

      [39] G.Y. Jiang, Y.L. Song, X.F. Guo, D.Q. Zhang, D.B. Zhu, Organic functional molecules towards information processing and high-density information storage, Adv. Mater. 20 (2008) 2888-2898.

    40. [40]

      [40] M.Q. Zhu, L.Y. Zhu, J.J. Han, et al., Spiropyran-based photochromic polymer nanoparticles with optically switchable luminescence, J. Am. Chem. Soc. 128 (2006) 4303-4309.

    41. [41]

      [41] D.S. Achilleos, T.A. Hatton, M. Vamvakaki, Light-regulated supramolecular engineering of polymeric nanocapsules, J. Am. Chem. Soc. 134 (2012) 5726-5729.

    42. [42]

      [42] K.E. Sapsford, L. Berti, I.L. Medintz, Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations, Angew. Chem. Int. Ed. 45 (2006) 4562-4589.

    43. [43]

      [43] Y. Wang, C.Y. Hong, C.Y. Pan, Spiropyran-based hyperbranched star copolymer: synthesis, phototropy, FRET, and bioapplication, Biomacromolecules 13 (2012) 2585-2593.

    44. [44]

      [44] J. Chen, F. Zeng, S.Z. Wu, Q.M. Chen, Z. Tong, A core-shell nanoparticle approach to photoreversible fluorescence modulation of a hydrophobic dye in aqueous media, Chem. Eur. J. 14 (2008) 4851-4860.

    45. [45]

      [45] J. Föling, S. Polyakova, V. Belov, et al., Synthesis and characterization of photoswitchable fluorescent silica nanoparticles, Small 4 (2008) 134-142.

  • 加载中
    1. [1]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    2. [2]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    3. [3]

      Di AnMingdong SheZiyang ZhangTing ZhangMiaomiao XuJinjun ShaoQian ShenXuna Tang . Light-responsive nanomaterials for biofilm removal in root canal treatment. Chinese Chemical Letters, 2025, 36(2): 109841-. doi: 10.1016/j.cclet.2024.109841

    4. [4]

      Shuai QiuJia HeXiao HuHongxia YanZhao GaoWei Tian . Cation-π enhanced triplet-to-singlet Förster resonance energy transfer for fluorescence afterglow. Chinese Chemical Letters, 2025, 36(4): 110057-. doi: 10.1016/j.cclet.2024.110057

    5. [5]

      Yiling LiZekun GaoXiuxiu YueMinhuan LanXiuli ZhengBenhua WangShuang ZhaoXiangzhi Song . FRET-based two-photon benzo[a] phenothiazinium photosensitizer for fluorescence imaging-guided photodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109133-. doi: 10.1016/j.cclet.2023.109133

    6. [6]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    7. [7]

      Qiuye WangYabing SunLiangxue LaiHaijing CuiYonglong YeMing YangWeihao ZhuBo YuanQuanliang MaoWenzhi RenAiguo Wu . MMP-9-responsive probe for fluorescence-magnetic resonance dual-mode imaging of hepatocellular carcinoma models with different metastatic capacities. Chinese Chemical Letters, 2025, 36(4): 110212-. doi: 10.1016/j.cclet.2024.110212

    8. [8]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    9. [9]

      Siwei WangWei-Lei ZhouYong Chen . Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior. Chinese Chemical Letters, 2024, 35(12): 110261-. doi: 10.1016/j.cclet.2024.110261

    10. [10]

      Xiaoyao MaJinling ZhangGe FangHe GaoJie GaoLi FuYuanyuan HouGang Bai . Förster resonance energy transfer reveals phillygenin and swertiamarin concurrently target AKT on different binding domains to increase the anti-inflammatory effect. Chinese Chemical Letters, 2024, 35(5): 108823-. doi: 10.1016/j.cclet.2023.108823

    11. [11]

      Zhixue LiuHaiqi ChenLijuan GuoXinyao SunZhi-Yuan ZhangJunyi ChenMing DongChunju Li . Luminescent terphen[3]arene sulfate-activated FRET assemblies for cell imaging. Chinese Chemical Letters, 2024, 35(9): 109666-. doi: 10.1016/j.cclet.2024.109666

    12. [12]

      Wenbin ZhouYafei GaoXinyu FengYanqing ZhangCong YangLanxi HeFenghe ZhangXiaoguang LiQing Li . Biomimetic nanoplatform integrates FRET-enhanced photodynamic therapy and chemotherapy for cascaded revitalization of the tumor immune microenvironment in OSCC. Chinese Chemical Letters, 2025, 36(1): 109763-. doi: 10.1016/j.cclet.2024.109763

    13. [13]

      Zhaorui SongQiulian HaoBing LiYuwei YuanShanshan ZhangYongkuan SuoHai-Hao HanZhen Cheng . NIR-Ⅱ fluorescence lateral flow immunosensor based on efficient energy transfer probe for point-of-care testing of tumor biomarkers. Chinese Chemical Letters, 2025, 36(1): 109834-. doi: 10.1016/j.cclet.2024.109834

    14. [14]

      Er-Meng WangZiyi WangXu BanXiaowei ZhaoYanli YinZhiyong Jiang . Chemoselective photocatalytic sulfenylamination of alkenes with sulfenamides via energy transfer. Chinese Chemical Letters, 2024, 35(12): 109843-. doi: 10.1016/j.cclet.2024.109843

    15. [15]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    16. [16]

      Xu QuPengzhao WuKaixuan DuanGuangwei WangLiang-Liang GaoYuan GuoJianjian ZhangDonglei Shi . Self-calibrating probes constructed on a unique dual-emissive fluorescence platform for the precise tracking of cellular senescence. Chinese Chemical Letters, 2024, 35(12): 109681-. doi: 10.1016/j.cclet.2024.109681

    17. [17]

      Hui ZhangRong FengWanyi YuHongbei WeiTianhong WuPeng ZhangWenhai BianXin LiDi GaoGuojun WengZhe YangTony D. JamesXiaolong Sun . Evaluating the global thiols redox state in living cells using a reducing sulfur species responsive fluorescence switching platform. Chinese Chemical Letters, 2025, 36(4): 110528-. doi: 10.1016/j.cclet.2024.110528

    18. [18]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    19. [19]

      Huanyu LiuGang YuRuoyao GuoHao QiJiayin ZhengTong JinZifeng ZhaoZuqiang BianZhiwei Liu . Direct identification of energy transfer mechanism in Ce-Mn system by constructing molecular heteronuclear complexes. Chinese Chemical Letters, 2025, 36(2): 110296-. doi: 10.1016/j.cclet.2024.110296

    20. [20]

      Yun-Xin HuangLin-Qian YuKe-Yu ChenHao WangShou-Yan ZhaoBao-Cheng HuangRen-Cun Jin . Biochar with self-doped N to activate peroxymonosulfate for bisphenol-A degradation via electron transfer mechanism: The active edge graphitic N site. Chinese Chemical Letters, 2024, 35(9): 109437-. doi: 10.1016/j.cclet.2023.109437

Metrics
  • PDF Downloads(0)
  • Abstract views(643)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return