Citation: Sakineh Asghari, Samaneh Ramezani, Mojtaba Mohseni. Synthesis and antibacterial activity of ethyl 2-amino-6-methyl-5-oxo-4-aryl-5,6-dihydro-4H-pyrano[3,2-c]quinoline-3-carboxylate[J]. Chinese Chemical Letters, ;2014, 25(3): 431-434. doi: 10.1016/j.cclet.2013.12.010 shu

Synthesis and antibacterial activity of ethyl 2-amino-6-methyl-5-oxo-4-aryl-5,6-dihydro-4H-pyrano[3,2-c]quinoline-3-carboxylate

  • Corresponding author: Sakineh Asghari, 
  • Received Date: 13 August 2013
    Available Online: 26 November 2013

    Fund Project:

  • The three-component reaction of 4-hydroxy-1-methyl-2(1H)-quinolinone, aromatic aldehydes and ethyl cyanoacetate was carried out in the presence of a catalytic amount of 4-dimethyl aminopyridine (DMAP) in aqueous ethanol. The reactions result in the formation of pyranoquinoline derivatives in excellent yields. Antibacterial activity has been evaluated against Gram positive and Gram negative bacteria for some of the synthesized compounds. The results indicated that these compounds are moderately effective against bacterial growth and their effectiveness is highest against Pseudomonas aeruginosa.
  • 加载中
    1. [1]

      [1] A. McKillop, L. McLaren, R.J. Watson, R.J. Taylor, N. Lewis, A concise synthesis of the novel antibiotic aranorosin, Tetrahedron Lett. 34 (1993) 5519-5522.

    2. [2]

      [2] I.S. Chen, S.J. Wu, I.J. Tsai, et al., Chemical and bioactive constituents from Zanthoxylum simulans, J. Nat. Prod. 57 (1994) 1206-1211.

    3. [3]

      [3] M.F. Grundon, The Alkaloids: Quinoline Alkaloids Related to Anthranilic Acid, Academic Press, London, 1988, pp. 341-439.

    4. [4]

      [4] W.N. Setzer, B. Vogler, R.B. Bates, et al., HPLC-NMR/HPLC-MS analysis of the bark extract of Stauranthus perforates, Phytochem. Anal. 14 (2003) 54-59.

    5. [5]

      [5] A. Afonso, S.W. McCombie, J. Weinstein, Quinoline-diones, US Patent 5179093A (1993).

    6. [6]

      [6] G.C. Sharp, Antifungal methods employing certain carbostyrils, US Patent 3836657A (1974).

    7. [7]

      [7] C. Jolivet, C. Rivalle, E. Bisagni, Synthesis of pyrano[2,3-h]quinolines as tricyclic acronycine analogues, Heterocycles 43 (1996) 995-1005.

    8. [8]

      [8] A. Afonso, J. Weinstein, M.J. Gentles, Alkyl and acyl substituted quinolines, US Patent 5382572A (1995).

    9. [9]

      [9] M. Miyoshi, N. Yoneda, R. Matsumoto, M. Suzuki, 3-Amino-4-hydroxycarbostyril derivatives, Tanabe Seiyaku Co. Ltd., Jpn. Kokai, 7746083 (1977).

    10. [10]

      [10] S.D. Mathada, B.H. Mathada, Synthesis and antimicrobial activity of some 5-substituted-3-phenyl-Nb-(substituted-2-oxo-2H-pyrano[2,3-b]quinoline-3-carbonyl)-1H-indole-2-carboxyhydrazide, Chem. Pharm. Bull. 57 (2009) 557-560.

    11. [11]

      [11] K.L. Hopkins, R.H. Davies, E.J. Threfall, Mechanisms of quinolone resistance in Escherichia coli and Salmonella: recent developments, Int. J. Antimicrob. Agents 25 (2005) 358-373.

    12. [12]

      [12] M. Ramesh, P.S. Mohan, P. Shanmugam, A convenient synthesis of flindersine, atanine and their analogues, Tetrahedron 40 (1984) 4041-4049.

    13. [13]

      [13] X.F. Duan, J. Zeng, Z.B. Zhang, G.F. Zi, A facile two-step synthesis of 2-arylbenzofurans based on the selective cross McMurry couplings, J. Org. Chem. 72 (2007) 10283-10286.

    14. [14]

      [14] P. Roy, B.K. Ghorai, One-pot synthesis of pyrano[4,3-b]quinolinones from 2-alkynyl-3-formylquinolines via oxidative 6-endo-dig ring closure, Tetrahedron Lett. 53 (2012) 235-238.

    15. [15]

      [15] J.H. Ye, K.Q. Ling, Y. Zhang, N. Li, J.H. Xu, Syntheses of 2-hydroxypyrano[3,2-c]quinolin-5-ones from 4-hydroxyquinolin-2-ones by tandem Knoevenagel condensation with aldehyde and Michael addition of enamine with the quinone methide-thermo-and photochemical approaches, J. Chem. Soc., Perkin Trans. 1 (1999) 2017-2024.

    16. [16]

      [16] X.S. Wang, Q. Li, J.R. Wu, S.J. Tu, Efficient method for the synthesis of pyranoquinoline, thiopyranoquinoline, thienoquinoline, and naphtho[2,7]naphthyridine derivatives catalyzed by iodine, J. Comb. Chem. 11 (2009) 433-437.

    17. [17]

      [17] L. El Kaim, L. Grimaud, X.F.L. Goff, A. Schiltz, Smiles cascades toward heterocyclic scaffolds, Org. Lett. 13 (2011) 534-536.

    18. [18]

      [18] I.V. Ukrainets, R.G. Red'kin, L.V. Sidorenko, A.V. Turov, 4-Hydroxy-2-quinolones 172. Synthesis and structure of 4,3'-spiro[(6-allyl-2-amino-5-oxo-5,6-dihydro-4h-pyrano-[3,2-c]quinoline-3-carbo-nitrile)-20-oxindole], Chem. Heterocycl. Compd. 45 (2009) 1478-1484.

    19. [19]

      [19] A.T. Khan, M. Lal, S. Ali, M.M. Khan, One-pot three-component reaction for the synthesis of pyran annulated heterocyclic compounds using DMAP as a catalyst, Tetrahedron Lett. 52 (2011) 5327-5332.

    20. [20]

      [20] E. Altieri, M. Cordaro, G. Grassi, F. Risitano, A. Scala, Regio and diastereoselective synthesis of functionalized 2,3-dihydrofuro[3,2-c]coumarins via a one-pot threecomponent reaction, Tetrahedron 66 (2010) 9493-9496.

    21. [21]

      [21] I.V. Magedov, M. Manpadi, M.A. Ogasawara, et al., Structural simplification of bioactive natural products with multicomponent synthesis. 2. Antiproliferative and antitubulin activities of pyrano[3,2-c]pyridones and pyrano[3,2-c]quinolones, J. Med. Chem. 51 (2008) 2561-2570.

    22. [22]

      [22] L. El Kaïm, L. Grimaud, S. Wagschal, Toward pyrrolo[2,3-d]pyrimidine scaffolds, J. Org. Chem. 75 (2010) 5343-5346.

    23. [23]

      [23] T. Godet, C. Vaxelaire, C. Michel, A. Milet, P. Belmont, Silver versus gold catalysis in tandem reactions of carbonyl functions onto alkynes: a versatile access to furoquinoline and pyranoquinoline cores, Chem. Eur. J. 13 (2007) 5632-5641.

    24. [24]

      [24] S. Banerjee, A. Horn, H. Khatri, G. Sereda, A green one-pot multicomponent synthesis of 4H-pyrans and polysubstituted aniline derivatives of biological, pharmacological, and optical applications using silica nanoparticles as reusable catalyst, Tetrahedron Lett. 52 (2011) 1878-1881.

    25. [25]

      [25] M. Yoshida, Y. Fujino, K. Saito, T. Doi, Regioselective synthesis of flavone derivatives via DMAP-catalyzed cyclization of o-alkynoylphenols, Tetrahedron 67 (2011) 9993-9997.

    26. [26]

      [26] S. Asghari, M. Qandalee, Three-component, one-pot synthesis of new functionalized pyrrolines, Synth. Commun. 40 (2010) 2172-2177.

    27. [27]

      [27] S. Asghari, A.K. Habibi, Synthesis of halogenated α,β-unsaturated γ-butyrolactone derivatives by triphenylphosphine-catalyzed cyclization of α-halogeno ketones with dialkyl acetylenedicarboxylates, Helv. Chim. Acta 95 (2012) 810-817.

    28. [28]

      [28] S. Asghari, A. Khabbazi Habibi, One pot three-component regioselective and diastereoselective synthesis of halogenated pyrido[2,1-b][1,3]oxazines, Tetrahedron 68 (2012) 8890-8898.

    29. [29]

      [29] S. Asghari, M. Qandalee, Z. Naderi, Z. Sobhaninia, One-pot synthesis of 4-arylquinolines from aromatic aminoketones and vinylphosphonium salts, Mol. Divers. 14 (2010) 569-574.

    30. [30]

      [30] S. Asghari, M. Tajbakhsh, V. Taghipour, A facile route to N-acetyl a,b-unsaturated g-lactam derivatives using ethyl acetamidocyanoacetate and dialkyl acetylenedicarboxylate in the presence of triphenylphosphine, Tetrahedron Lett. 49 (2008) 1824-1827.

    31. [31]

      [31] F.C. Tenover, Antibiotic susceptibility testing, in: Encyclopedia of Microbiology, 3rd ed., Academic Press, Oxford, 2009p. 67.

    32. [32]

      [32] M. Ghaemy, B. Aghakhani, M. Taghavi, S.M.A. Nasab, M. Mohseni, Synthesis and characterization of new imidazole and fluorine bisphenol based polyamides: thermal, photophysical and antibacterial properties, React. Funct. Polym. 73 (2013) 555-563.

  • 加载中
    1. [1]

      Bowen WangLongwu SunQianqian CaoXinzhi LiJianai ChenShizhao WangMiaolin KeFener Chen . Cu-catalyzed three-component CSP coupling for the synthesis of trisubstituted allenyl phosphorothioates. Chinese Chemical Letters, 2024, 35(12): 109617-. doi: 10.1016/j.cclet.2024.109617

    2. [2]

      Xingyu ChenSihui ZhuangWeiyao YanZhengli ZengJianguo FengHongen CaoLei Yu . Synthesis, antibacterial evaluation, and safety assessment of Se@PLA as a potent bactericide against Xanthomonas oryzae pv. oryzae. Chinese Chemical Letters, 2024, 35(10): 109635-. doi: 10.1016/j.cclet.2024.109635

    3. [3]

      Yanye FanJingjing ChenBichun ChenJinyu BaiBowen YangFeng LiangLijing Fang . Design, synthesis and biological evaluation of Leu10-teixobactin analogues. Chinese Chemical Letters, 2025, 36(4): 110075-. doi: 10.1016/j.cclet.2024.110075

    4. [4]

      Fangping YangJin ShiYuansong WeiQing GaoJingrui ShenLichen YinHaoyu Tang . Mixed-charge glycopolypeptides as antibacterial coatings with long-term activity. Chinese Chemical Letters, 2025, 36(2): 109746-. doi: 10.1016/j.cclet.2024.109746

    5. [5]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    6. [6]

      Lingfeng ZhengChengyuan LvWenlin CaiQingze PanZuokai WangWenkai LiuJiangli FanXiaojun Peng . A single-component LED excited enone photoinitiator for colorless and transparent antibacterial film preparation. Chinese Chemical Letters, 2025, 36(4): 109922-. doi: 10.1016/j.cclet.2024.109922

    7. [7]

      Chunmao YuanYanrong ZengLei HuangYu MouJun JinPing YiYanmei LiXiaojiang Hao . Hymoins A–C, three unusual polycyclic polyprenylated acylphloroglucinols with lipid-lowering activity from Hypericum monogynum. Chinese Chemical Letters, 2025, 36(3): 109859-. doi: 10.1016/j.cclet.2024.109859

    8. [8]

      Huixin ChenChen ZhaoHongjun YueGuiming ZhongXiang HanLiang YinDing Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650

    9. [9]

      Hailang DengAbebe Reda WolduAbdul QayumZanling HuangWeiwei ZhuXiang PengPaul K. ChuLiangsheng Hu . Killing two birds with one stone: Enhancing the photoelectrochemical water splitting activity and stability of BiVO4 by Fe ions association. Chinese Chemical Letters, 2024, 35(12): 109892-. doi: 10.1016/j.cclet.2024.109892

    10. [10]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    11. [11]

      Wei SuXiaoyan LuoPeiyuan LiYing ZhangChenxiang LinKang WangJianzhuang Jiang . Phthalocyanine self-assembled nanoparticles for type Ⅰ photodynamic antibacterial therapy. Chinese Chemical Letters, 2024, 35(12): 109522-. doi: 10.1016/j.cclet.2024.109522

    12. [12]

      Qihang WuHui WenWenhai LinTingting SunZhigang Xie . Alkyl chain engineering of boron dipyrromethenes for efficient photodynamic antibacterial treatment. Chinese Chemical Letters, 2024, 35(12): 109692-. doi: 10.1016/j.cclet.2024.109692

    13. [13]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2024.100332

    14. [14]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    15. [15]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    16. [16]

      Mianling YangMeehyein KimPeng Zhan . Modular miniaturized synthesis and in situ biological evaluation facilitate rapid discovery of potent MraY inhibitors as antibacterial agents. Chinese Chemical Letters, 2025, 36(2): 110455-. doi: 10.1016/j.cclet.2024.110455

    17. [17]

      Yue RenKang LiYi-Zi WangShao-Peng ZhaoShu-Min PanHaojie FuMengfan JingYaming WangFengyuan YangChuntai Liu . Swelling and erosion assisted sustained release of tea polyphenol from antibacterial ultrahigh molecular weight polyethylene for joint replacement. Chinese Chemical Letters, 2025, 36(2): 110468-. doi: 10.1016/j.cclet.2024.110468

    18. [18]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    19. [19]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    20. [20]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

Metrics
  • PDF Downloads(0)
  • Abstract views(597)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return