Citation: Wei-Wei Cai, Hui Yang, Xing-Zhong Guo. A facile one-step route to synthesize titania hollow microspheres with incontinuous multicavities[J]. Chinese Chemical Letters, ;2014, 25(3): 441-446. doi: 10.1016/j.cclet.2013.12.002 shu

A facile one-step route to synthesize titania hollow microspheres with incontinuous multicavities

  • Corresponding author: Xing-Zhong Guo, 
  • Received Date: 29 July 2013
    Available Online: 21 November 2013

    Fund Project: This work is supported by the National Natural Science Foundation of China (No. 51372225) (No. 51372225)Zhejiang Provincial Natural Science Foundation of China (No. LY13B010001). (No. LY13B010001)

  • The titania hollow microspheres with incontinuous multicavities were successfully fabricated via an oil/water (O/W) emulsion process accompanied by sol-gel reaction in the presence of polyvinylpyrrolidone (PVP). In the one-step route, the addition of PVP to the tetrabutyl titanate (TBT) 1-octanol solution as the oil phase of the O/W emulsion clearly expands the size of the cavities inside the microspheres. The npropanol and atoleine alters the polarity of the oil phase to affect the interior structure significantly. The Span 80 is used as a stabilizer to preserve spherical shape. A preliminary mechanism based on phaseseparation for the structural evolution of titania hollow microspheres with multicavities is suggested. Zirconia and alumina hollow microspheres with incontinuous multicavities can also be prepared by this one-step route successfully.
  • 加载中
    1. [1]

      [1] J. Hu, M. Chen, X.S. Fang, L.M. Wu, Fabrication and application of inorganic hollow spheres, Chem. Soc. Rev. 40 (2011) 5472-5491.

    2. [2]

      [2] S. Schacht, Q. Huo, I.G. Voigt-Martin, G.D. Stucky, F. Schü th, Oil-water interface templating of mesoporous macroscale structures, Science 273 (1996) 768-771.

    3. [3]

      [3] J.H. Park, C. Oh, S. Shin, S.K. Moon, S.G. Oh, Preparation of hollowsilicamicrospheres in w/o emulsions with polymers, J. Colloid Interface Sci. 266 (2003) 107-114.

    4. [4]

      [4] T. Nakashima, N. Kimizuka, Interfacial synthesis of hollow TiO2 microspheres in ionic liquids, J. Am. Chem. Soc. 125 (2003) 6386-6387.

    5. [5]

      [5] H.L. Xu, W.Z. Wang, Template synthesis of multishelled Cu2O hollow spheres with a single-crystalline shell wall, Angew. Chem. Int. Ed. 46 (2007) 1489-1492.

    6. [6]

      [6] J.G. Guan, F.Z. Mou, Z.G. Sun, W.D. Shi, Preparation of hollow spheres with controllable interior structures by heterogeneous contraction, Chem. Commun. 46 (2010) 6605-6607.

    7. [7]

      [7] Y.B. Kim, K.S. Yoon, A physical method of fabricating hollow polymer spheres directly from oil/water emulsions of solutions of polymers, Macromol. Rapid Commun. 25 (2004) 1643-1649.

    8. [8]

      [8] E. Kamio, S. Yonemura, T. Ono, H. Yoshizawa, Microcapsules with macroholes prepared by the competitive adsorption of surfactants on emulsion droplet surfaces, Langmuir 24 (2008) 13287-13298.

    9. [9]

      [9] J. Han, P. Fang, J. Dai, R. Guo, One-pot surfactantless route to polyaniline hollow nanospheres with incontinuous multicavities and application for the removal of lead ions from water, Langmuir 28 (2012) 6468-6475.

    10. [10]

      [10] J.X. Xu, G.J. Chen, R. Yan, et al., One-stage synthesis of cagelike porous polymeric microspheres and application as catalyst scaffold of Pd nanoparticles, Macromolecules 44 (2011) 3730-3738.

    11. [11]

      [11] H. Zhang, A.I. Cooper, Synthesis of monodisperse emulsion-templated polymer beads by oil-in-water-in-oil (O/W/O) sedimentation polymerization, Chem. Mater. 14 (2002) 4017-4020.

    12. [12]

      [12] H. Wang, M.Z. Wang, X.W. Ge, One-step fabrication of multihollow polystyrene particles from miniemulsion system with nonionic surfactant, Polymer 49 (2008) 4974-4980.

    13. [13]

      [13] G.H. Zhang, R.X. Hou, D.X. Zhan, et al., Fabrication of hollow porous PLGA microspheres for controlled protein release and promotion of cell compatibility, Chin. Chem. Lett. 24 (2013) 710-714.

    14. [14]

      [14] L. Li, E.S.G. Choo, X.S. Tang, J. Ding, J.M. Xue, A facile one-step route to synthesize cage-like silica hollow spheres loaded with superparamagnetic iron oxide nanoparticles in their shells, Chem. Commun. 45 (2009) 938-940.

    15. [15]

      [15] F. Iskandar, K. Okuyama, Controllability of pore size and porosity on self-organized porous silica particles, Nano Lett. 2 (2002) 389-392.

    16. [16]

      [16] X. Du, J.H. He, Fine-tuning of silica nanosphere structure by simple regulation of the volume ratio of cosolvents, Langmuir 26 (2010) 10057-10062.

    17. [17]

      [17] D. Grosso, G.J. de A.A. Soler-Illia, E.L. Crepaldi, B. Charleux, C. Sanchez, Nanocrystalline transition-metal oxide spheres with controlled multi-scale porosity, Adv. Funct. Mater. 13 (2003) 37-42.

    18. [18]

      [18] K. Nakanishi, Pore structure control of silica gels based on phase separation, J. Porous Mater. 4 (1994) 67-112.

    19. [19]

      [19] Q.L. Zhang, F. Wu, H. Yang, D. Zou, Preparation and dielectric properties of (Ca0.61,Nd0.26)TiO3 nanoparticles by a sol-gel method, J. Mater. Chem. 18 (2008) 5339-5343.

    20. [20]

      [20] T. Sato, A. Sato, T. Arai, Adsorption of polyvinylpyrrolidone on titanium dioxide from binary solvents (methanol/water) and its effect on dispersion stability, Colloids Surf. A 142 (1998) 117-120.

    21. [21]

      [21] M.P. Zheng, M.Y. Gu, Y.P. Jin, G.L. Jin, Preparation, structure and properties of TiO2-PVP hybrid films, Mater. Sci. Eng. B 77 (2000) 55-59.

    22. [22]

      [22] Y. Frere, P. Gramain, Reaction kinetics of polymer substituents: macromolecular steric hindrance effect in quaternization of poly(vinylpyridines), Macromolecules 25 (1992) 3184-3189.

    23. [23]

      [23] K. Nakanishi, N. Tanaka, Sol-gel with phase separation. Hierarchically porous materials optimized for high-performance liquid chromatography separations, Acc. Chem. Res. 40 (2007) 863-873.

    24. [24]

      [24] F. Gao, Z.G. Su, P. Wang, G.H. Ma, Double emulsion templated microcapsules with single hollow cavities and thickness-controllable shells, Langmuir 25 (2009) 3832-3838.

    25. [25]

      [25] A.Y. Khan, S. Talegaonkar, Z. Iqbal, J.F. Ahmed, R.K. Khar, Multiple emulsions: an overview, Curr. Drug Deliv. 3 (2006) 429-443.

    26. [26]

      [26] Y. Tokudome, K. Fujita, K. Nakanishi, K. Miura, K. Hirao, Synthesis of monolithic Al2O3 with well-defined macropores and mesostructured skeletons via the sol-gel process accompanied by phase separation, Chem. Mater. 19 (2007) 3393-3398.

    27. [27]

      [27] F.Q. Lin, W.S. Dong, C.L. Liu, Z.T. Liu, M.Y. Li, In situ source-template-interface reaction route to hollow ZrO2 microspheres with mesoporous shells, J. Colloid Interface Sci. 323 (2008) 365-371.

    28. [28]

      [28] J. Konishi, K. Fujita, S. Oiwa, K. Nakanishi, K. Hirao, Crystalline ZrO2 monoliths with well-defined macropores and mesostructured skeletons prepared by combining the alkoxy-derived sol-gel process accompanied by phase separation and the solvothermal process, Chem. Mater. 20 (2008) 2165-2173.

  • 加载中
    1. [1]

      Ruotong WeiAokun LiuJian KuangZhiwen WangLu YuChanglin Tian . Probing the dynamic properties in the LLPS process via site-directed spin labeling-electron paramagnetic resonance (SDSL-EPR) spectroscopy. Chinese Chemical Letters, 2025, 36(4): 110029-. doi: 10.1016/j.cclet.2024.110029

    2. [2]

      Zhefei HuJingwen LiaoJiawen ZhouLulu ZhaoYanjuan LiuYuefei ZhangWei ChenSheng Tang . A new green approach to synthesizing MIP-202@porous silica microspheres for positional isomer/enantiomer/hydrophilic separation. Chinese Chemical Letters, 2025, 36(1): 109985-. doi: 10.1016/j.cclet.2024.109985

    3. [3]

      Ning ZhangMengjie QinJiawen ZhuXuejing LouXiao TianWende MaYoumei WangMinghua LuZongwei Cai . Thickness-controllable synthesis of metal-organic framework based hollow nanoflowers with magnetic core via liquid phase epitaxy for phosphopeptides enrichment. Chinese Chemical Letters, 2025, 36(4): 110177-. doi: 10.1016/j.cclet.2024.110177

    4. [4]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    5. [5]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    6. [6]

      Jiaxu WangJinxie ZhangXiuping WangJingying WangLina ChenJiahui CaoWei CaoSiyu LiangPing LuanKe ZhengXiao-Kun OuyangLi GaoXiaowen OuFan ZhangMeitong OuLin Mei . CaCO3-coated hollow mesoporous silica nanoparticles for pH-responsive fungicides release. Chinese Chemical Letters, 2024, 35(12): 109697-. doi: 10.1016/j.cclet.2024.109697

    7. [7]

      Xueyan ZhangJicong ChenSongren HanShiyan DongHuan ZhangYuhong ManJie YangYe BiLesheng Teng . The size-switchable microspheres co-loaded with RANK siRNA and salmon calcitonin for osteoporosis therapy. Chinese Chemical Letters, 2024, 35(12): 109668-. doi: 10.1016/j.cclet.2024.109668

    8. [8]

      Rui LiRuijie LuLibin YangJianwen LiZige GuoQiquan YanMengjun LiYazhuo NiKeying ChenYaoyang LiBo XuMengzhen CuiZhan LiZhiying Zhao . Immobilization of chitosan nano-hydroxyapatite alendronate composite microspheres on polyetheretherketone surface to enhance osseointegration by inhibiting osteoclastogenesis and promoting osteogenesis. Chinese Chemical Letters, 2025, 36(4): 110242-. doi: 10.1016/j.cclet.2024.110242

    9. [9]

      Pengcheng SuShizheng ChenZhihong YangNingning ZhongChenzi JiangWanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357

    10. [10]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

    11. [11]

      Mengjia Luo Yi Qiu Zhengyang Zhou . Exploring temperature-driven phase dynamics of phosphate: The periodic to incommensurately modulated long-range ordered phase transition in CsCdPO4. Chinese Journal of Structural Chemistry, 2025, 44(1): 100446-100446. doi: 10.1016/j.cjsc.2024.100446

    12. [12]

      Lishan XiongXinyuan LiXiaojie LuZhendong ZhangYan ZhangWen WuChenhui Wang . Inhaled multilevel size-tunable, charge-reversible and mucus-traversing composite microspheres as trojan horse: Enhancing lung deposition and tumor penetration. Chinese Chemical Letters, 2024, 35(9): 109384-. doi: 10.1016/j.cclet.2023.109384

    13. [13]

      Lingling SuQunyan WuCongzhi WangJianhui LanWeiqun Shi . Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ). Chinese Chemical Letters, 2024, 35(8): 109402-. doi: 10.1016/j.cclet.2023.109402

    14. [14]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    15. [15]

      Huangjie Lu Yingzhe Du Peng Lin Jian Lin . Separation of americium from lanthanides based on oxidation state control. Chinese Journal of Structural Chemistry, 2024, 43(10): 100344-100344. doi: 10.1016/j.cjsc.2024.100344

    16. [16]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

    17. [17]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    18. [18]

      Zhuangzhuang ZhangYaru QiaoJun ZhaoDai-Huo LiuMengmin JiaHongwei TangLiang WangDongmei DaiBao Li . Fluorine-doped K0.39Mn0.77Ni0.23O1.9F0.1 microspheres with highly reversible oxygen redox reaction for potassium-ion battery cathode. Chinese Chemical Letters, 2025, 36(3): 109907-. doi: 10.1016/j.cclet.2024.109907

    19. [19]

      Shengyu ZhaoQinhao ShiWuliang FengYang LiuXinxin YangXingli ZouXionggang LuYufeng Zhao . Suppression of multistep phase transitions of O3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(5): 108606-. doi: 10.1016/j.cclet.2023.108606

    20. [20]

      Xue XinQiming QuIslam E. KhalilYuting HuangMo WeiJie ChenWeina ZhangFengwei HuoWenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654

Metrics
  • PDF Downloads(0)
  • Abstract views(625)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return