Citation: Xu-Wei Wu, Bin-Dong Li. Preparation of high purity 1,2-diols by catalytic oxidation of linear terminal alkenes with H2O2 in the presence of carboxylic acids under solvent-free conditions[J]. Chinese Chemical Letters, ;2014, 25(3): 459-462. doi: 10.1016/j.cclet.2013.11.049 shu

Preparation of high purity 1,2-diols by catalytic oxidation of linear terminal alkenes with H2O2 in the presence of carboxylic acids under solvent-free conditions

  • Corresponding author: Bin-Dong Li, 
  • Received Date: 17 September 2013
    Available Online: 19 November 2013

  • The oxidation of terminal alkenes was smoothly catalyzed by a recyclable and environmentally friendly catalytic system: [(C18H37)2N(CH3)2]3[PW4O16]/H2O2/formic acid. This new catalytic system is not only capable of catalyzing oxidation of terminal alkenes with a phase-transfer character, but also under solvent-free conditions, avoiding the use of chlorinated solvents. Many different kinds of terminal alkenes could be converted to the corresponding 1,2-diols of high purity in high yields. The catalyst could be easily separated and reused after reaction. Both fresh and used [(C18H37)2N(CH3)2]3[PW4O16] catalyst was characterized by Raman and FTIR.
  • 加载中
    1. [1]

      [1] B.S. Lane, K. Burgess, Metal-catalyzed epoxidations of alkenes with hydrogen peroxide, Chem. Rev. 7 (2003) 2457-2473.

    2. [2]

      [2] G. Grigoropoutou, J.H. Clark, J.A. Elings, Recent developments on the epoxidation of alkenes using hydrogen peroxide as an oxidant, Green Chem. 5 (2003) 1-7.

    3. [3]

      [3] D.C. Duncan, R.C. Chambers, E. Hecht, C.L. Hill, Mechanism and dynamics in the H3[PW12O40]-catalyzed selective epoxidation of terminal olefins by H2O2: formation, reactivity, and stability of {PO4][WO(O2)2]4}3, J. Am. Chem. Soc. 117 (1995) 681-691.

    4. [4]

      [4] D. Yong, B.C. Ma, D.J. Tong, et al., Synthesis of epoxides catalyzed by a halide-free reaction-controlled phase-transfer catalytic system: [(CH3(CH2)17)2N(CH3)2]3[PW4O32]/H2O2/dioxan/olefin, Aust. J. Chem. 62 (2009) 739-746.

    5. [5]

      [5] R. Neumann, H. Miller, Alkene oxidation in water using hydrophobic silica particles derivatized with polyoxometalates as catalysts, J. Chem. Soc. Chem. Commun. (1995) 2277-2278.

    6. [6]

      [6] R. Neumann, M. Cohen, Solvent-anchored supported liquid phase catalysis: polyoxo-metalate-catalyzed oxidations, Angew. Chem. Int. Engl. 36 (1997) 1738-1740.

    7. [7]

      [7] T. Sakamoto, C. Pac, Selective epoxidation of olefins by hydrogen peroxide in water using a polyoxometalate catalyst supported on chemically modified hydrophobic mesoporous silica gel, Tetrahedron Lett. 41 (2000) 10009-10012.

    8. [8]

      [8] D. Yong, B.C. Ma, Q. Gao, J.S. Sou, Epoxidation of alkenes by hydrogen peroxide over 12-heteropolyacids of molybdenum and tungsten (H3PMo3W9O40) combined with cetylpyridinium bromide, J. Chem. Res. 2006 (2006) 499-503.

    9. [9]

      [9] L. Hua, Y.X. Qiao, H. Li, et al., Epoxidation of olefins with hydrogen peroxide catalyzed by a reusable lacunary-type phosphotungstate catalyst, Sci. China Chem. 54 (2011) 769-773.

    10. [10]

      [10] J. Chen, X. Chang, J.C. Jiang, et al., The research progress of the heteropoly acid quaternary ammonium salt phase transfer catalyst system, Guangzhou Chem. Ind. 40 (2012) 6-8.

    11. [11]

      [11] J. Li, S. Gao, Z.W. Xi, Progress in reaction-controlled phase-transfer catalysis, Chin. J. Catal. 26 (2010) 895-911.

    12. [12]

      [12] W.J. Xu, L. Jing, F.M. Zhang, et al., Research progress in phase-transfer catalysis by organic heteropolyacid salts, J. Zhejiang Normal Univ. 35 (2012) 85-92.

    13. [13]

      [13] Z.W. Xi, N. Zhou, Y. Sun, K. Li, Reaction-controlled phase-transfer catalysis for propylene epoxidation to propylene oxide, Science 292 (2001) 1139-1141.

    14. [14]

      [14] Y.Y. Chen, J.Q. Zhuang, X.M. Liu, et al., On the nature of reaction-controlled phase transfer catalysts for epoxidation of olefin: a 31P NMR investigation, Catal. Lett. 93 (2004) 41-46.

    15. [15]

      [15] H. Hua, B.C. Ma, D.J. Tong, et al., [π-C5H5N(CH2)15CH3]3[PMoW3O24]: a heteropolyoxomolybdotungstate catalyst for efficient and recyclable epoxidation of 1-octene with 30% H2O2 using environmentally friendly solvent, J. Mol. Catal. A 23 (2009) 97-105.

    16. [16]

      [16] X.Y. Sun, X.B. Zhao, W. Du, D.H. Liu, Kinetics of formic acid-autocatalyzed preparation of performic acid in aqueous phase, Chin. J. Chem. Eng. 19 (2011) 964-971.

    17. [17]

      [17] G.D. Sala, A. Lattanzi, T. Severino, A. Scettri, The first application of titanocenes in the asymmetric oxidation of sulfides, J. Mol. Catal. A. 170 (2001) 219-224.

    18. [18]

      [18] G.D. Yadav, A.A. Pujari, Epoxidation of styrene to styrene oxide: synergism of heteropoly acid and phase-transfer catalyst under Ishii-Venturello mechanism, Org. Proc. Res. Dev. 4 (2000) 88-93.

    19. [19]

      [19] J. Gao, Y. Chen, Z. Xi, et al., A spectroscopic study on the reaction-controlled phase transfer catalyst in the epoxidation of cyclohexene, J. Mol. Catal. A: Chem. 210 (2004) 197-204.

    20. [20]

      [20] C. Rocchiccioli-Deltchef, R. Thouvent, Metal complexes of heteropolyanions α-XM11O39n- with X = Si(IV) or P(V) and M = Mo(VI) or W(VI): study of structural modifications of ligand by infrared and Raman spectrometry, J. Chem. Res. (S) (1977) 46-47.

    21. [21]

      [21] H. Chen, W.L. Dai, X.L. Yang, et al., Studies on the structural change of a reactioncontrolled phase-transfer [π-C5H5NC16H33]3{PO4][WO3]4} catalyst during the selective oxidation of cyclopentene to glutaric acid with aqueous H2O2, Appl. Catal. A: Gen. 309 (2006) 62-69.

    22. [22]

      [22] L. Salles, C. Aubry, J.M. Bregeauh, et al., Preparation of various onium tetrakis (oxodiperoxomolybdo) phosphates. Ⅲ. Structure and reactivity towards olefins under biphasic conditions, New J. Chem. 17 (1993) 367-375.

  • 加载中
    1. [1]

      Xiaoxue LiHongwei ZhouRongrong QianXu ZhangLei Yu . A concise synthesis of Se/Fe materials for catalytic oxidation reactions of anthracene and polyene. Chinese Chemical Letters, 2025, 36(3): 110036-. doi: 10.1016/j.cclet.2024.110036

    2. [2]

      Zhikang WuGuoyong DaiQi LiZheyu WeiShi RuJianda LiHongli JiaDejin ZangMirjana ČolovićYongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061

    3. [3]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    4. [4]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    5. [5]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    6. [6]

      Jinge ZhuAiling TangLeyi TangPeiqing CongChao LiQing GuoZongtao WangXiaoru XuJiang WuErjun Zhou . Chlorination of benzyl group on the terminal unit of A2-A1-D-A1-A2 type nonfullerene acceptor for high-voltage organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110233-. doi: 10.1016/j.cclet.2024.110233

    7. [7]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

    8. [8]

      Xiao-Ming ChenLianhui SongJun PanFei ZengYi XieWei WeiDong Yi . Visible-light-induced four-component difunctionalization of alkenes to construct phosphorodithioate-containing quinoxalin-2(1H)-ones. Chinese Chemical Letters, 2024, 35(11): 110112-. doi: 10.1016/j.cclet.2024.110112

    9. [9]

      Chengde WangLiping HuangShanshan WangLihao WuYi WangJun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383

    10. [10]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    11. [11]

      Shu TianWenxin HuangJunrui HuHuiling WangZhipeng ZhangLiying XuJunrong LiYao Sun . Exploring the frontiers of plant health: Harnessing NIR fluorescence and surface-enhanced Raman scattering modalities for innovative detection. Chinese Chemical Letters, 2025, 36(3): 110336-. doi: 10.1016/j.cclet.2024.110336

    12. [12]

      Chunhui ZhangJie WangJieyang ZhanRunmin YangGuanggang GaoJiayuan ZhangLinlin FanMengqi WangHong Liu . Highly sensitive hydrazine detection through a novel Raman scattering quenching mechanism enabled by a crystalline and noble metal–free polyoxometalate substrate. Chinese Chemical Letters, 2025, 36(3): 109719-. doi: 10.1016/j.cclet.2024.109719

    13. [13]

      Wenjing Dai Lan Luo Zhen Yin . Interface reconstruction of hybrid oxide electrocatalysts for seawater oxidation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100442-100442. doi: 10.1016/j.cjsc.2024.100442

    14. [14]

      Gang HuChun WangQinqin WangMingyuan ZhuLihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298

    15. [15]

      Zhenkang AiHui ChenXuebin Liao . Nickel-catalyzed decarboxylative difluoromethylation and alkylation of alkenes. Chinese Chemical Letters, 2025, 36(3): 109954-. doi: 10.1016/j.cclet.2024.109954

    16. [16]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    17. [17]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

    18. [18]

      Gu GongMengzhu LiNing SunTing ZhiYuhao HeJunan PanYuntao CaiLonglu Wang . Versatile oxidized variants derived from TMDs by various oxidation strategies and their applications. Chinese Chemical Letters, 2024, 35(6): 108705-. doi: 10.1016/j.cclet.2023.108705

    19. [19]

      Erzhuo ChengYunyi LiWei YuanWei GongYanjun CaiYuan GuYong JiangYu ChenJingxi ZhangGuangquan MoBin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386

    20. [20]

      Zhipeng Wan Hao Xu Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298

Metrics
  • PDF Downloads(0)
  • Abstract views(593)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return