Citation:
Javad Safaei-Ghomi, Hossein Shahbazi-Alavi, Abolfazl Ziarati, Raheleh Teymuri, Mohammad Reza Saberi. A highly flexible green synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-dione derivatives with CuI nanoparticles as catalyst under solvent-free conditions[J]. Chinese Chemical Letters,
;2014, 25(3): 401-405.
doi:
10.1016/j.cclet.2013.11.046
-
CuI nanoparticles as an efficient catalyst have been used for the preparation of 1H-pyrazolo[1,2-b]phthalazine-5,10-diones by the four-component condensation reaction of phthalic anhydride, hydrazine monohydrate, aromatic aldehydes and malononitrile or ethyl cyanoacetate under solventfree conditions in good to excellent yields, short reaction times and environmentally benign, milder reaction conditions.
-
-
-
[1]
[1] W.R. Vaughan, The chemistry of the phthalazines, Chem. Rev. 43 (1948) 447-508.
-
[2]
[2] H.W. Heine, R. Henrie, L. Heitz, S.R. Kovvali, Diaziridines Ⅲ. Reactions of some 1-alkyl-and 1,1-dialkyl-1H-diazirino[1,2-b]phthalazine-3,8-diones, J. Org. Chem. 39 (1974) 3187-3191.
-
[3]
[3] S. Rostamizadeh, M. Nojavan, R. Aryan, H. Sadeghian, M. Davoodnejad, A novel and efficient synthesis of pyrazolo[3,4-d]pyrimidine derivatives and the study of their anti-bacterial activity, Chin. Chem. Lett. 24 (2013) 629-632.
-
[4]
[4] N.K. Terrett, A.S. Bell, D. Brown, P. Ellis, Sildenafil (VIAGRATM), a potent and selective inhibitor of type 5cGMP, phosphodiesterase with utility for the treatment of maleerectile dysfunction, Bioorg. Med. Chem. Lett. 6 (1996) 1819-1824.
-
[5]
[5] S.K. Singh, P.G. Reddy, K.S. Rao, et al., Polar substitutions in the benzenesulfonamide ring of celecoxib afford a potent 1,5-diarylpyrazole class of COX-2 inhibitors, Bioorg. Med. Chem. Lett. 14 (2004) 499-504.
-
[6]
[6] T. Nakamura, M. Sato, H. Kakinuma, et al., Pyrazole and isoxazole derivatives as new, potent, and selective 20-hydroxy-5,8,11,14-eicosatetraenoic acid synthase inhibitors, J. Med. Chem. 46 (2003) 5416-5427.
-
[7]
[7] O. Prakash, R. Kumar, V. Parkash, Synthesis and antifungal activity of some new 3-hydroxy-2-(1-phenyl-3-aryl-4-pyrazolyl)chromones, Eur. J. Med. Chem. 43 (2008) 435-440.
-
[8]
[8] M.A.F. Vera-DiVaio, A.C.C. Freitas, H.C.A. Castro, et al., Synthesis, antichagasic in vitor evaluation, cytotoxicity assays, molecular modeling and SAR/QSAR studies of a 2-phenyl-3-(1-phenyl-1H-pyrazol-4-yl) acrylic acid benzylidene-carbohydrazide series, Bioorg. Med. Chem. 17 (2009) 295-302.
-
[9]
[9] M.J. Genin, C. Biles, B.J. Keiser, et al., Novel 1,5-diphenylpyrazole nonnucleoside HIV-1 reverse transcriptase inhibitors with enhanced activity versus the delavirdine-resistant P236L mutant: lead identification and SAR of 3-and 4-substituted derivatives, J. Med. Chem. 43 (2000) 1034-1040.
-
[10]
[10] F. Wei, B.X. Zhao, B. Huang, et al., Design, synthesis, and preliminary biological evaluation of novel ethyl 1-(2'-hydroxy-3'-aroxypropyl)-3-aryl-1H-pyrazole-5-carboxylate, Bioorg, Med. Chem. Lett. 16 (2006) 6342-6347.
-
[11]
[11] Y. Xia, Z.W. Dong, B.X. Zhao, et al., Synthesis and structure-activity relationships of novel 1-arylmethyl-3-aryl-1H-pyrazole-5-carbohydrazide derivatives as potential agents against A549 lung cancer cells, Bioorg. Med. Chem. 15 (2007) 6893-6899.
-
[12]
[12] P.C. Lü, J. Sun, Y. Luo, Y. Yang, H.L. Zhu, Design, synthesis, and structure activity relationships of pyrazole derivatives as potential FabH inhibitors, Bioorg. Med. Chem. Lett. 20 (2010) 4657-4660.
-
[13]
[13] N. Cho, M. Kamaura, T. Yogo, H. Imoto, Preparation of pyrazole derivatives as improvement of insulin resistance, WO 2009139340.
-
[14]
[14] K. Dugi, M. Mark, F. Himmelsbach, Pharmaceutical composition comprising a pyrazole-O-glucoside derivative, WO 2009022009 A 1.
-
[15]
[15] S.S. El-Saka, A.H. Soliman, A.M. Imam, Synthesis, antimicrobial activity and electron impact of mass spectra of phthalazine-1,4-dione derivatives, Afinidad 66 (2009) 167-172.
-
[16]
[16] L. Zhang, L.P. Guan, X.Y. Sun, et al., Synthesis and anticonvulsant activity of 6-alkoxy-[1,2,4]triazolo[3,4-a]phthalazines, Chem. Biol. Drug Des. 73 (2009) 313-319.
-
[17]
[17] C.K. Ryu, R.E. Park, M.Y. Ma, J.H. Nho, Synthesis and antifungal activity of 6-arylamino-phthalazine-5,8-diones and 6,7-bis(arylthio)-phthalazine-5,8-diones, Bioorg. Med. Chem. Lett. 17 (2007) 2577-2580.
-
[18]
[18] J. Li, Y.F. Zhao, X.Y. Yuan, J.X. Xu, P. Gong, Synthesis and anticancer activities of novel 1,4-disubstituted phthalazines, Molecules 11 (2006) 574-582.
-
[19]
[19] Y. Nomoto, H. Obase, H. Takai, et al., Studies on cardiotonic agents. Ⅱ. Synthesis of novel phthalazine and 1,2,3-benzotriazine derivatives, Chem. Pharm. Bull. (Tokyo) 38 (1990) 2179-2183.
-
[20]
[20] N. Watanabe, Y. Kabasawa, Y. Takase, et al., 4-Benzylamino-1-chloro-6-substituted phthalazines: synthesis and inhibitory activity toward phosphodiesterase 5, J. Med. Chem. 41 (1998) 3367-3372.
-
[21]
[21] F. Al'-Assar, K.N. Zelenin, E.E. Lesiovskaya, I.P. Bezhan, B.A. Chakchir, Synthesis and pharmacological activity of 1-hydroxy, 1-amino-, and 1-hydrazino-substituted 2,3-dihydro-1H-pyrazolo[1,2-a]pyridazine-5,8-diones and 2,3-dihydro-1H-pyrazolo[1,2-b]phthalazine-5,10-diones, J. Pharm. Chem. 36 (2002) 598-603.
-
[22]
[22] J. Sinkkonen, V. Ovcharenko, K.N. Zelenin, et al., 1H and 13C NMR study of 1-hydrazino-2,3-dihydro-1H-pyrazolo[1,2-a]pyridazine-5,8-diones and 1H-pyrazolo[1,2-b]phthalazine-5,10-diones and their ring-chain tautomerism, Eur. J. Org. Chem. 13 (2002) 2046-2053.
-
[23]
[23] R.P. Jain, J.C. Vederas, Structural variations in keto-glutamines for improved inhibition against hepatitis A virus 3C proteinase, Bioorg. Med. Chem. Lett. 14 (2004) 3655-3658.
-
[24]
[24] A. Kumar, M.K. Gupta, M. Kumar, L-Proline catalysed multicomponent synthesis of 3-amino alkylated indoles via a Mannich-type reaction under solvent-free conditions, Green Chem. 14 (2012) 290-295.
-
[25]
[25] I. Ugi, A. Dömling, W. Hörl, Multicomponent reactions in organic chemistry, Endeavour 18 (1994) 115-122.
-
[26]
[26] M.M. Heravi, B. Baghernejad, H.A. Oskooie, A novel three-component reaction for the synthesis of N-cyclohexyl-3-aryl-quinoxaline-2-amines, Tetrahedron Lett. 50 (2009) 767-769.
-
[27]
[27] J. Gerencser, G. Dormon, F. Darvas, Meldrum's acid in multicomponent reaction: applications to combinatorial and diversity-oriented synthesis, QSAR Comb. Sci. 25 (2006) 439-448.
-
[28]
[28] D.J. Ramon, M. Yus, Asymmetric multicomponent reactions (AMCRs): the new frontier, Angew. Chem. Int. Ed. 44 (2005) 1602-1634.
-
[29]
[29] L. Lu, M.L. Sui, K. Lu, Superplastic extensibility of nanocrystalline copper at room temperature, Science 287 (2000) 1463-1466.
-
[30]
[30] Y.J. Song, C. Yoo, J.T. Hong, et al., Nanocrystalline copper oxide(Ⅱ)-catalyzed alkyne-azide cycloadditions, Bull. Korean Chem. Soc. 29 (2008) 1561-1564.
-
[31]
[31] M. Kidwai, N.K. Mishra, V. Bansal, A. Kuma, S. Mozumdar, Novel one-pot Cunanoparticles-catalyzed Mannich reaction, Tetrahedron Lett. 50 (2009) 1355-1358.
-
[32]
[32] A.K. Verma, R. Kumar, P. Chaudhary, et al., Cu-nanoparticles: a chemoselective catalyst for the aza-Michael reactions of N-alkyl and N-arylpiperazines with acrylonitrile, Tetrahedron Lett. 46 (2005) 5229-5232.
-
[33]
[33] A.K. Edward, L.M. Anton, S.K. Yulia, et al., Copper nanoparticles as active catalysts in hydroxylation of phenol by hydrogen peroxide, Appl. Catal. A: Gen. 385 (2010) 62-72.
-
[34]
[34] J. Safaei-Ghomi, A. Ziarati, R. Teymuri, CuI nanoparticles as new, efficient and reusable catalyst for the one-pot synthesis of 1,4-dihydropyridines, Bull. Korean Chem. Soc. 33 (2012) 2679-2682.
-
[35]
[35] J. Safaei-Ghomi, M.A. Ghasemzadeh, CuI nanoparticles: a highly active and easily recyclable catalyst for the synthesis of 2-amino-3,5-dicyano-6-sulfanyl pyridines, J. Sulfur Chem. 34 (2013) 233-241.
-
[36]
[36] A. Ziarati, J. Safaei-Ghomi, S. Rohani, Pseudo five-component process for the synthesis of functionalized tricarboxamides using CuI nanoparticles as reusable catalyst, Chin. Chem. Lett. 24 (2013) 195-198.
-
[37]
[37] R. Ghahremanzadeh, G. Imani Shakibaei, A. Bazgir, An efficient one-pot synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-dionederivatives,Synlett8 (2008)1129-1132.
-
[38]
[38] M.R. Nabid, S.J. Tabatabaei Rezaei, R. Ghahremanzadeh, A. Bazgir, Ultrasoundassisted one-pot, three-component synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-diones, Ultrason. Sonochem. 17 (2010) 159-161.
-
[39]
[39] D.S. Raghuvanshi, K.N. Singh, A highly efficient green synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-dione derivatives and their photophysical studies, Tetrahedron Lett. 52 (2011) 5702-5705.
-
[40]
[40] H.R. Shaterian, M. Mohammadnia, Mild basic ionic liquids catalyzed new fourcomponent synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-diones, J. Mol. Liq. 173 (2012) 55-61.
-
[41]
[41] G. Karthikeyan, A. Pandurangan, Post synthesis alumination of KIT-6 materials with la3d symmetry and their catalytic efficiency towards multicomponent synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-dione carbonitriles and carboxylates, J. Mol. Catal. A: Chem. 361-362 (2012) 58-67.
-
[42]
[42] S.H. Song, J. Zhong, Y.H. He, Z. Guan, One-pot four-component synthesis of 1Hpyrazolo[1,2-b]phthalazine-5,10-dione derivatives, Tetrahedron Lett. 53 (2012) 7075-7077.
-
[43]
[43] M. Veeranarayana Reddy, Y. Tae Jeeong, InCl3-catalyzed green synthesis of 1Hpyrazolo[1,2-b]phthalazine-5,10-diones under solvent-free conditions, Tetrahedron Lett. 54 (2013) 3546-3549.
-
[44]
[44] Y. Jiang, S.Y. Gao, Z.D. Li, X.X. Jia, Y.L. Chen, Cauliflower-like CuI nanostructures: green synthesis and applications as catalyst and adsorbent, Mater. Sci. Eng. B 176 (2011) 1021-1027.
-
[45]
[45] A. Azarifar, R. Nejat-Yami, D. Azarifar, Nano-ZnO: an efficient and reusable catalyst for one-pot synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-diones and pyrazolo[1,2-a][1,2,4]triazole-1,3-diones, J. Iran. Chem. Soc. 10 (2013) 297-306.
-
[1]
-
-
-
[1]
Yuwen Zhu , Xiang Deng , Yan Wu , Baode Shen , Lingyu Hang , Yuye Xue , Hailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733
-
[2]
Bohan Chen , Liming Gong , Jing Feng , Mingji Jin , Liqing Chen , Zhonggao Gao , Wei Huang . Research advances of nanoparticles for CAR-T therapy in solid tumors. Chinese Chemical Letters, 2024, 35(9): 109432-. doi: 10.1016/j.cclet.2023.109432
-
[3]
Wei Su , Xiaoyan Luo , Peiyuan Li , Ying Zhang , Chenxiang Lin , Kang Wang , Jianzhuang Jiang . Phthalocyanine self-assembled nanoparticles for type Ⅰ photodynamic antibacterial therapy. Chinese Chemical Letters, 2024, 35(12): 109522-. doi: 10.1016/j.cclet.2024.109522
-
[4]
Yiran Tao , Chunlei Dai , Zhaoxiang Xie , Xinru You , Kaiwen Li , Jun Wu , Hai Huang . Redox responsive polymeric nanoparticles enhance the efficacy of cyclin dependent kinase 7 inhibitor for enhanced treatment of prostate cancer. Chinese Chemical Letters, 2024, 35(8): 109170-. doi: 10.1016/j.cclet.2023.109170
-
[5]
Yihao Zhang , Yang Jiao , Xianchao Jia , Qiaojia Guo , Chunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748
-
[6]
Yixin Zhang , Ting Wang , Jixiang Zhang , Pengyu Lu , Neng Shi , Liqiang Zhang , Weiran Zhu , Nongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619
-
[7]
Keyang Li , Yanan Wang , Yatao Xu , Guohua Shi , Sixian Wei , Xue Zhang , Baomei Zhang , Qiang Jia , Huanhua Xu , Liangmin Yu , Jun Wu , Zhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511
-
[8]
Yujie Li , Ya-Nan Wang , Yin-Gen Luo , Hongcai Yang , Jinrui Ren , Xiao Li . Advances in synthetic biology-based drug delivery systems for disease treatment. Chinese Chemical Letters, 2024, 35(11): 109576-. doi: 10.1016/j.cclet.2024.109576
-
[9]
Fereshte Hassanzadeh-Afruzi , Mina Azizi , Iman Zare , Ehsan Nazarzadeh Zare , Anwarul Hasan , Siavash Iravani , Pooyan Makvandi , Yi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564
-
[10]
Shenglan Zhou , Haijian Li , Hongyi Gao , Ang Li , Tian Li , Shanshan Cheng , Jingjing Wang , Jitti Kasemchainan , Jianhua Yi , Fengqi Zhao , Wengang Qu . Recent advances in metal-loaded MOFs photocatalysts: From single atom, cluster to nanoparticle. Chinese Chemical Letters, 2025, 36(1): 110142-. doi: 10.1016/j.cclet.2024.110142
-
[11]
Meiling Xu , Xinyang Li , Pengyuan Liu , Junjun Liu , Xiao Han , Guodong Chai , Shuangling Zhong , Bai Yang , Liying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860
-
[12]
Zhiyu Yu , Xiang Luo , Cheng Zhang , Xin Lu , Xiaohui Li , Pan Liao , Zhongqiu Liu , Rong Zhang , Shengtao Wang , Zhiqiang Yu , Guochao Liao . Mitochondria-targeted carrier-free nanoparticles based on dihydroartemisinin against hepatocellular carcinoma. Chinese Chemical Letters, 2024, 35(10): 109519-. doi: 10.1016/j.cclet.2024.109519
-
[13]
Bharathi Natarajan , Palanisamy Kannan , Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349
-
[14]
Lang Gao , Cen Zhou , Rui Wang , Feng Lan , Bohang An , Xiaozhou Huang , Xiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832
-
[15]
Zhi Li , Wenpei Li , Shaoping Jiang , Chuan Hu , Yuanyu Huang , Maxim Shevtsov , Huile Gao , Shaobo Ruan . Legumain-triggered aggregable gold nanoparticles for enhanced intratumoral retention. Chinese Chemical Letters, 2024, 35(7): 109150-. doi: 10.1016/j.cclet.2023.109150
-
[16]
Feng Cui , Fangman Chen , Xiaochun Xie , Chenyang Guo , Kai Xiao , Ziping Wu , Yinglu Chen , Junna Lu , Feixia Ruan , Chuanxu Cheng , Chao Yang , Dan Shao . Scalable production of mesoporous titanium nanoparticles through sequential flash nanocomplexation. Chinese Chemical Letters, 2024, 35(4): 108681-. doi: 10.1016/j.cclet.2023.108681
-
[17]
Xiangyuan Zhao , Jinjin Wang , Jinzhao Kang , Xiaomei Wang , Hong Yu , Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159
-
[18]
Xinyi Hu , Riguang Zhang , Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157
-
[19]
Xue Xin , Qiming Qu , Islam E. Khalil , Yuting Huang , Mo Wei , Jie Chen , Weina Zhang , Fengwei Huo , Wenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654
-
[20]
Guorong Li , Yijing Wu , Chao Zhong , Yixin Yang , Zian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(689)
- HTML views(16)