Citation: Qamar Subhani, Zhong-Ping Huang, Zuo-Yi Zhu, Lu-Ye Liu, Yan Zhu. Analysis of insecticide thiacloprid by ion chromatography combined with online photochemical derivatisation and fluorescence detection in water samples[J]. Chinese Chemical Letters, ;2014, 25(3): 415-418. doi: 10.1016/j.cclet.2013.11.014 shu

Analysis of insecticide thiacloprid by ion chromatography combined with online photochemical derivatisation and fluorescence detection in water samples

  • Corresponding author: Yan Zhu, 
  • Received Date: 2 September 2013
    Available Online: 25 October 2013

    Fund Project:

  • This study describes a novel application of ion chromatography coupled with post-column photochemically induced fluorimetry derivatisation in alkaline medium and fluorescence detection (IC-hv-FD) for the determination of neonicotinoid pesticide, thiacloprid. In an aqueous medium, this compound showed fluorescence with an excitation maximum at 236 nm and an emission maximum at 353 nm. The 10 mmol/L NaOH with 10% (v/v) acetonitrile solution pumped at flow rate of 1.0 mL/min was used for the chromatographic elution to isocratically separate thiacloprid on an Ion Pac®AS 11 (250 mm×4 mm i.d; 13 mm particle size, Dionex) anion-exchange column. The linear concentration range of application was 0.04-10.0 mg/L, with a relative standard deviation (RSD, n = 7) of 1.7% (for a level of 2.0 mg/L) and detection limit (LOD, S/N = 3) of 9.9 mg/L. The procedure was applied with satisfactory results to the analysis of thiacloprid in ground and lake water samples. Pesticide average spiked recoveries ranged between 95.5% and 114.0%.
  • 加载中
    1. [1]

      [1] M.J. Farré, M.I. Franch, S. Malato, et al., Degradation of some biorecalcitrant pesticides by homogeneous and heterogeneous photocatalytic ozonation, Chemosphere 58 (2005) 1127-1133.

    2. [2]

      [2] The Council of the EU, Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption E.C, Off. J. Eur. Commun. 330 (1998) 32-54.

    3. [3]

      [3] G.G. Ying, R.S. Kookana, Simultaneous determination of imidacloprid, thiacloprid, and thiamethoxam in soil and water by high-performance liquid chromatography with diode-array detection, J. Environ. Sci. Health B 39 (2004) 737-746.

    4. [4]

      [4] S. Seccia, P. Fidente, D. Montesano, P. Morrica, Determination of neonicotinoid insecticides residues in bovine milk samples by solid-phase extraction clean-up and liquid chromatography with diode-array detection, J. Chromatogr. A 1214 (2008) 115-120.

    5. [5]

      [5] V. Guzsvány, A. Madžgalj, P. Trebše, F. Gaál, M. Franko, Determination of selected neonicotinoid insecticides by liquid chromatography with thermal lens spectrometric detection, Environ. Chem. Lett. 5 (2007) 203-208.

    6. [6]

      [6] E. Watanabe, K. Baba, H. Eun, Simultaneous determination of neonicotinoid insecticides in agricultural samples by solid-phase extraction clean up and liquid chromatography equipped with diode-array detection, J. Agric. Food Chem. 55 (2007) 3798-3804.

    7. [7]

      [7] S. Seccia, P. Fidente, D.A. Barbini, P. Morrica, Multiresidue determination of nicotinoid insecticide residues in drinking water by liquid chromatography with electrospray ionization mass spectrometry, Anal. Chim. Acta 553 (2005) 21-26.

    8. [8]

      [8] P. Wang, X. Yang, J. Wang, et al., Multi-residue method for determination of seven neonicotinoid insecticides in grains using dispersive solid-phase extraction and dispersive liquid-liquid micro-extraction by high performance liquid chromatography, Food Chem. 134 (2012) 1691-1698.

    9. [9]

      [9] A. Agü era, S. López, A.R. Fernández-Alba, et al., One-year routine application of a new method based on liquid chromatography-tandem mass spectrometry to the analysis of 16 multiclass pesticides in vegetable samples, J. Chromatogr. A 1045 (2004) 125-135.

    10. [10]

      [10] F.Z. Zhang, Y.J. Li, C.S. Yu, C.P. Pan, Determination of six neonicotinoid insecticides residues in spinach, cucumber, apple and pomelo by QuEChERS method and LC-MS/MS, Bull. Environ. Contam. Toxicol. 88 (2012) 885-890.

    11. [11]

      [11] B. Gilbert-López, L. Jaén-Martos, J. García-Reyes, et al., Study on the occurrence of pesticide residues in fruit-based soft drinks fromthe EU market and morocco using liquid chromatography-mass spectrometry, Food Control 26 (2012) 341-346.

    12. [12]

      [12] P. Fidente, S. Seccia, F. Vanni, P. Morrica, Analysis of nicotinoid insecticides residues in honey by solid matrix partition clean-up and liquid chromatography-electrospray mass spectrometry, J. Chromatogr. A 1094 (2005) 175-178.

    13. [13]

      [13] M.D. Gil García, M. Martínez Galera, D. Barranco Martínez, J. Gisbert Gallego, Determination of benzoylureas in ground water samples by fully automated online pre-concentration and liquid chromatography-fluorescence detection, J. Chromatogr. A 1103 (2006) 271-277.

    14. [14]

      [14] J. López Flores, A. Molina Díaz, M.L. Fernández de Córdova, Development of a photochemically induced fluorescence-based optosensor for the determination of imidacloprid in peppers and environmental waters, Talanta 72 (2007) 991-997.

    15. [15]

      [15] A. Coelho, R. Aucelio, Photochemical induced fluorescence for the determination of prednisolone and triamcinolone, Anal. Lett. 39 (2006) 619-630.

    16. [16]

      [16] M. Sánchez Peña, A. Muñoz de la Peña, F. Salinas, et al., Determination of binary mixtures of sulfonamides by photochemically induced fluorescence using partial least squares multivariate calibration, Analyst 119 (1994) 1177-1181.

    17. [17]

      [17] Q. Subhani, Z.P. Huang, Z.Y. Zhu, Y. Zhu, Simultaneous determination of imidacloprid and carbendazim in water samples by ion chromatography with fluorescence detector and post-column photochemical reactor, Talanta 116 (2013) 127-132.

    18. [18]

      [18] Z.H. Wang, J.F. Xia, F.Y. Zhao, et al., Determination of benzoic acid in milk by solidphase extraction and ion chromatography with conductivity detection, Chin. Chem. Lett. 24 (2013) 243-245.

    19. [19]

      [19] P.J. Xie, M.L. Ye, Z.Y. Hu, et al., Determination of levels of adenosine phosphates in blood by ion chromatography, Chin. Chem. Lett. 22 (2011) 1485-1488.

    20. [20]

      [20] J.L. Vílchez, M.C. Valencia, A. Navalón, et al., Flow injection analysis of the insecticide imidacloprid in water samples with photochemically induced fluorescence detection, Anal. Chim. Acta 439 (2001) 299-305.

    21. [21]

      [21] EPA, Thiacloprid; pesticide tolerances, rules and regulation, Fed. Regist. 78 (2013) 8410-8416.

  • 加载中
    1. [1]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    2. [2]

      Ying XuChengying ShenHailong YuanWei Wu . Mapping multiple phases in curcumin binary solid dispersions by fluorescence contrasting. Chinese Chemical Letters, 2024, 35(9): 109324-. doi: 10.1016/j.cclet.2023.109324

    3. [3]

      Manman OuYunjian ZhuJiahao LiuZhaoxuan LiuJianjun WangJun SunChuanxiang QinLixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510

    4. [4]

      Junqing WuYiyang ZhangQingqing HongHui YangLifeng ZhangMing ZhangLei Yu . Organometallic modification of silica with europium endowing the fluorescence properties: The key technique for numerical quality monitoring. Chinese Chemical Letters, 2025, 36(4): 110165-. doi: 10.1016/j.cclet.2024.110165

    5. [5]

      Kuan DengFei YangZhi-Qi ChengBi-Wen RenHua LiuJiao ChenMeng-Yao SheLe YuXiao-Gang LiuHai-Tao FengJian-Li Li . Construction of wavelength-tunable DSE quinoline salt derivatives by regulating the hybridization form of the nitrogen atom and intramolecular torsion angle. Chinese Chemical Letters, 2024, 35(10): 109464-. doi: 10.1016/j.cclet.2023.109464

    6. [6]

      Mengfan ZhangLingyan LiuPeng WeiWei FengTao Yi . A proximity tagging strategy utilizing an activated aldehyde group as the active site. Chinese Chemical Letters, 2025, 36(4): 110127-. doi: 10.1016/j.cclet.2024.110127

    7. [7]

      Ying WangHong YangCaixia ZhuQing HongXuwen CaoKaiyuan WangYuan XuYanfei ShenSongqin LiuYuanjian Zhang . Cascading oxidoreductases-like nanozymes for high selective and sensitive fluorescent detection of ascorbic acid. Chinese Chemical Letters, 2025, 36(4): 110153-. doi: 10.1016/j.cclet.2024.110153

    8. [8]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    9. [9]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    10. [10]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    11. [11]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    12. [12]

      Zhiwei ZhongYanbin HuangWantai Yang . A simple photochemical method for surface fluorination using perfluoroketones. Chinese Chemical Letters, 2024, 35(5): 109339-. doi: 10.1016/j.cclet.2023.109339

    13. [13]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    14. [14]

      Shehla KhalidMuhammad BilalNasir RasoolMuhammad Imran . Photochemical reactions as synthetic tool for pharmaceutical industries. Chinese Chemical Letters, 2024, 35(9): 109498-. doi: 10.1016/j.cclet.2024.109498

    15. [15]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    16. [16]

      Yuxin LiChengbin LiuQiuju LiShun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541

    17. [17]

      Ziyou ZhangTe JiHongliang DongZhiqiang ChenZhi Su . Effect of coordination restriction on pressure-induced fluorescence evolution. Chinese Chemical Letters, 2024, 35(12): 109542-. doi: 10.1016/j.cclet.2024.109542

    18. [18]

      Lei ShenYang ZhangLinlin ZhangChuanwang LiuZhixian MaKangjiang LiangChengfeng Xia . Phenylhydrazone anions excitation for the photochemical carbonylation of aryl iodides with aldehydes. Chinese Chemical Letters, 2024, 35(4): 108742-. doi: 10.1016/j.cclet.2023.108742

    19. [19]

      Yan GuoHongtao BianLe YuJiani MaYu Fang . Photochemical reaction mechanism of benzophenone protected guanosine at N7 position. Chinese Chemical Letters, 2025, 36(3): 109971-. doi: 10.1016/j.cclet.2024.109971

    20. [20]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

Metrics
  • PDF Downloads(0)
  • Abstract views(641)
  • HTML views(36)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return