掺铬富锂锰基材料作为高性能全固态锂电池正极

高珂珂 许浩哲 刘兴坤 孙春文

引用本文: 高珂珂, 许浩哲, 刘兴坤, 孙春文. 掺铬富锂锰基材料作为高性能全固态锂电池正极[J]. 物理化学学报, 2026, 42(3): 100200. doi: 10.1016/j.actphy.2025.100200 shu
Citation:  Keke Gao, Haozhe Xu, Xingkun Liu, Chunwen Sun. Cr-doped lithium-rich manganese-based materials as a cathode for high-performance all-solid-state lithium batteries[J]. Acta Physico-Chimica Sinica, 2026, 42(3): 100200. doi: 10.1016/j.actphy.2025.100200 shu

掺铬富锂锰基材料作为高性能全固态锂电池正极

    通讯作者: Email: csun@cumtb.edu.cn (孙春文)
摘要: 具有富锂锰基材料(LRMs)的全固态锂离子电池(ASSLBs)因其高能量密度和安全性被视为下一代储能体系。然而,不可逆的氧释放导致的卤化物固态电解质(SEs)严重的界面降解问题亟待解决。本研究合成了兼具高容量与稳定性的铬掺杂LRMs材料。Cr3+/Cr6+的可逆氧化还原反应提升了额外的容量,同时Cr6+离子在八面体与四面体位点间的可逆迁移有效维持了材料结构稳定性。此外,强Cr–O键能稳定晶格氧,构建稳定的正极/电解质界面并缓解电压衰减。因此,采用LRMs-Cr0.1正极与卤化物电解质的ASSLBs在0.5C倍率下循环500圈,每圈容量衰减率仅为0.065%。值得注意的是,LRMs-Cr0.1//Li21Si5@Si/C全电池在0.3C倍率下循环1000圈,容量保持率接近100%,对应的能量密度为413.11 Wh kg−1。该研究为开发高能量密度的固态电池提供了指导。

English

    1. [1]

      Y.-K. Sun, ACS Energy Lett. 5 (10) (2020) 3221. https://doi.org/10.1021/acsenergylett.0c01977. doi: 10.1021/acsenergylett.0c01977

    2. [2]

      C. Sun, J. Liu, Y. Gong, D.P. Wilkinson, J. Zhang, Nano Energy 33 (2017) 363. https://doi.org/10.1016/j.nanoen.2017.01.028. doi: 10.1016/j.nanoen.2017.01.028

    3. [3]

      X. Hu, Q. Xia, F. Yue, X. He, Z. Mei, J. Wang, H. Xia, X. Huang, Acta Phys. Chim. Sin. 40 (2) (2024) 2309046. https://doi.org/10.3866/pku.Whxb202309046. doi: 10.3866/pku.Whxb202309046

    4. [4]

      K. Wang, K. Liu, H. Wu, Acta Phys. Chim. Sin. 39 (12) (2023) 2301009. https://doi.org/10.3866/pku.Whxb202301009. doi: 10.3866/pku.Whxb202301009

    5. [5]

      G. Xue, J. Li, J. Chen, D. Chen, C. Hu, L. Tang, B. Chen, R. Yi, Y. Shen, L. Chen, Acta Phys. Chim. Sin. 2023, 39 (8) (2022) 2205012. https://doi.org/10.3866/pku.Whxb202205012.

    6. [6]

      G. Assat, J.-M. Tarascon, Nat. Energy 3 (5) (2018) 373. https://doi.org/10.1038/s41560-018-0097-0. doi: 10.1038/s41560-018-0097-0

    7. [7]

      K. Gao, C. Sun, Z. Wang, Mater. Chem. Front. 8 (2024) 3082. https://doi.org/10.1039/D4QM00513A. doi: 10.1039/D4QM00513A

    8. [8]

      W. Du, Q. Shao, Y. Wei, C. Yan, P. Gao, Y. Lin, Y. Jiang, Y. Liu, X. Yu, M. Gao, et al., ACS Energy Lett. 7 (9) (2022) 3006. https://doi.org/10.1021/acsenergylett.2c01637. doi: 10.1021/acsenergylett.2c01637

    9. [9]

      Y. Liu, T. Yu, S. Guo, H. Zhou, Acta Phys. Chim. Sin. 39 (8) (2023) 2301027. https://doi.org/10.3866/pku.Whxb202301027. doi: 10.3866/pku.Whxb202301027

    10. [10]

      Y. Yang, N. Hu, Y.-H. Zhang, Y. Zheng, Z. Hu, C.-Y. Kuo, H.-J. Lin, C.-T. Chen, T.-S. Chan, C.-W. Kao, et al., ACS Appl. Mater. Interfaces 15 (25) (2023) 30060. https://doi.org/10.1021/acsami.3c01876. doi: 10.1021/acsami.3c01876

    11. [11]

      Y. Wu, K. Zhou, F. Ren, Y. Ha, Z. Liang, X. Zheng, Z. Wang, W. Yang, M. Zhang, M. Luo, et al., Energy Environ. Sci. 15 (8) (2022) 3470. https://doi.org/10.1039/d2ee01067d. doi: 10.1039/d2ee01067d

    12. [12]

      R. Yu, C. Wang, H. Duan, M. Jiang, A. Zhang, A. Fraser, J. Zuo, Y. Wu, Y. Sun, Y. Zhao, et al., Adv. Mater. 35 (5) (2023) e2207234. https://doi.org/10.1002/adma.202207234. doi: 10.1002/adma.202207234

    13. [13]

      S. Sun, C.Z. Zhao, G.Y. Liu, S.C. Wang, Z.H. Fu, W.J. Kong, J.L. Li, X. Chen, X. Zhao, Q. Zhang, Adv. Mater. 37 (2024) 2414195. https://doi.org/10.1002/adma.202414195. doi: 10.1002/adma.202414195

    14. [14]

      S. Sun, C.-Z. Zhao, H. Yuan, Z.-H. Fu, X. Chen, Y. Lu, Y.-F. Li, J.-K. Hu, J. Dong, J.-Q. Huang, et al., Sci. Adv. 8 (47) (2022) eadd5189. https://doi.org/10.1126/sciadv.add5189. doi: 10.1126/sciadv.add5189

    15. [15]

      Y. Wang, D. Wu, P. Chen, P. Lu, X. Wang, L. Chen, H. Li, F. Wu, Adv. Funct. Mater. 34 (2023) 2309822. https://doi.org/10.1002/adfm.202309822. doi: 10.1002/adfm.202309822

    16. [16]

      W.-J. Kong, C.-Z. Zhao, L. Shen, S. Sun, X.-Y. Huang, P. Xu, Y. Lu, W.-Z. Huang, J.-L. Li, J.-Q. Huang, et al., J. Am. Chem. Soc. 41 (146) (2024) 28190. https://doi.org/10.1021/jacs.4c08115. doi: 10.1021/jacs.4c08115

    17. [17]

      B. Li, H. Yan, J. Ma, P. Yu, D. Xia, W. Huang, W. Chu, Z. Wu, Adv. Funct. Mater. 24 (32) (2014) 5112. https://doi.org/10.1002/adfm.201400436. doi: 10.1002/adfm.201400436

    18. [18]

      R.-P. Qing, J.-L. Shi, D.-D. Xiao, X.-D. Zhang, Y.-X. Yin, Y.-B. Zhai, L. Gu, Y.-G. Guo, Adv. Energy Mater. 6 (6) (2016) 1501914. https://doi.org/10.1002/aenm.201501914. doi: 10.1002/aenm.201501914

    19. [19]

      Y. Lyu, N. Zhao, E. Hu, R. Xiao, X. Yu, L. Gu, X.-Q. Yang, H. Li, Chem. Mater. 27 (15) (2015) 5238. https://doi.org/10.1021/acs.chemmater.5b01362. doi: 10.1021/acs.chemmater.5b01362

    20. [20]

      S. Liu, J. Wang, Z. Tian, Q. Li, X. Tian, Y. Cui, Y. Yang, Chem. Commun. 53 (87) (2017) 11913. https://doi.org/10.1039/c7cc07545f. doi: 10.1039/c7cc07545f

    21. [21]

      G. Singh, R. Thomas, A. Kumar, R.S. Katiyar, J. Electrochem. Soc. 159 (4) (2012) A410. https://doi.org/10.1149/2.059204jes. doi: 10.1149/2.059204jes

    22. [22]

      Z. Zhang, Z. Sun, X. Han, Y. Liu, S. Pei, Y. Li, L. Luo, P. Su, C. Lan, Z. Zhang, et al., Energy Environ. Sci. 17 (3) (2024) 1061. https://doi.org/10.1039/d3ee03877g. doi: 10.1039/d3ee03877g

    23. [23]

      R. Song, J. Yao, R. Xu, Z. Li, X. Yan, C. Yu, Z. Huang, L. Zhang, Adv. Energy Mater. 13 (9) (2023) 2203631. https://doi.org/10.1002/aenm.202203631. doi: 10.1002/aenm.202203631

    24. [24]

      D. Zeng, J. Yao, L. Zhang, R. Xu, S. Wang, X. Yan, C. Yu, L. Wang, Nat. Commun. 13 (1) (2022) 1909. https://doi.org/10.1038/s41467-022-29596-8. doi: 10.1038/s41467-022-29596-8

    25. [25]

      H. Yan, J. Yao, Z. Ye, Q. Lin, Z. Zhang, S. Li, D. Song, Z. Wang, C. Yu, L. Zhang, Chin. Chem. Lett. 36 (1) (2025) 109568. https://doi.org/10.1016/j.cclet.2024.109568. doi: 10.1016/j.cclet.2024.109568

    26. [26]

      H. Yan, R. Song, R. Xu, S. Li, Q. Lin, X. Yan, Z. Wang, C. Yu, L. Zhang, J. Energy Chem. 86 (2023) 499. https://doi.org/10.1016/j.jechem.2023.07.028. doi: 10.1016/j.jechem.2023.07.028

    27. [27]

      T.H. Wan, M. Saccoccio, C. Chen, F. Ciucci, Electrochim. Acta 184 (2015) 483. https://doi.org/10.1016/j.electacta.2015.09.097. doi: 10.1016/j.electacta.2015.09.097

    28. [28]

      C. Zhang, M. Yan, W. Li, C. Han, J. Li, H. Zhao, G. Jia, S. An, X. Qiu, ACS Appl. Mater. Interfaces 13 (41) (2021) 48653. https://doi.org/10.1021/acsami.1c13462. doi: 10.1021/acsami.1c13462

    29. [29]

      X. Chen, X. Zhai, Y. Wu, X. Wang, L. Zhang, C. Shang, H. Zhang, C. Zhao, J. Shang, D. Liu, J. Energy Storage 114 (2025) 115826. https://doi.org/10.1016/j.est.2025.115826. doi: 10.1016/j.est.2025.115826

    30. [30]

      J. Song, H. Wang, Y. Zuo, K. Zhang, T. Yang, Y. Yang, C. Gao, T. Chen, G. Feng, Z. Jiang, et al., Electrochem. Energy Rev. 6 (1) (2023) 20. https://doi.org/10.1007/s41918-023-00184-8. doi: 10.1007/s41918-023-00184-8

    31. [31]

      G. Singh, S.L. Gupta, R. Prasad, S. Auluck, R. Gupta, A. Sil, J. Phys. Chem. Solids 70 (8) (2009) 1200. https://doi.org/10.1016/j.jpcs.2009.07.001. doi: 10.1016/j.jpcs.2009.07.001

    32. [32]

      S. Zhao, K. Yan, J. Zhang, B. Sun, G. Wang, Angew. Chem. Int. Ed 60 (5) (2021) 2208. https://doi.org/10.1002/anie.202000262. doi: 10.1002/anie.202000262

    33. [33]

      D. Luo, X. Ding, J. Fan, Z. Zhang, P. Liu, X. Yang, J. Guo, S. Sun, Z. Lin, Angew. Chem. Int. Ed 59 (51) (2020) 23061. https://doi.org/10.1002/anie.202010531. doi: 10.1002/anie.202010531

    34. [34]

      C.-C. Wang, A. Manthiram, J. Mater. Chem. A 1 (35) (2013) 10209. https://doi.org/10.1039/c3ta11703k. doi: 10.1039/c3ta11703k

    35. [35]

      B. Song, M.O. Lai, L. Lu, Electrochim. Acta 80 (2012) 187. https://doi.org/10.1016/j.electacta.2012.06.118. doi: 10.1016/j.electacta.2012.06.118

    36. [36]

      G. Ceder, MRS Bull. 35 (9) (2010) 693. https://doi.org/10.1557/mrs2010.681. doi: 10.1557/mrs2010.681

    37. [37]

      G. Cao, X. Yang, Z. Yin, Y. Lei, H. Wang, J. Li, Bull. Chem. Soc. Jpn. 92 (7) (2019) 1205. https://doi.org/10.1246/bcsj.20190061. doi: 10.1246/bcsj.20190061

    38. [38]

      X. Ding, Y. Wen, C. Qing, Y. Wei, P. Wang, J. Liu, Z. Peng, Y. Song, H. Chen, Q. Rong, J. Alloys Compd. 986 (2024) 174041. https://doi.org/10.1016/j.jallcom.2024.174041. doi: 10.1016/j.jallcom.2024.174041

    39. [39]

      W. Zhao, Z. Wei, L. Zhang, X. Wu, X. Wang, J. Jiang, J. Nanomater. 2017 (1) (2017) 9378349. https://doi.org/10.1155/2017/9378349. doi: 10.1155/2017/9378349

    40. [40]

      J. Liu, J. Wang, Y. Ni, Y. Zhang, J. Luo, F. Cheng, J. Chen, Small Methods 3 (12) (2019) 1900350. https://doi.org/10.1002/smtd.201900350. doi: 10.1002/smtd.201900350

    41. [41]

      J. Li, F.L. Deepak, Chem. Rev. 122 (23) (2022) 16911. https://doi.org/10.1021/acs.chemrev.1c01067. doi: 10.1021/acs.chemrev.1c01067

    42. [42]

      H. Yamauchi, J. Ikejiri, K. Tsunoda, A. Tanaka, F. Sato, T. Honma, T. Komatsu, Sci. Rep. 10 (1) (2020) 9453. https://doi.org/10.1038/s41598-020-66410-1. doi: 10.1038/s41598-020-66410-1

    43. [43]

      I. Kochetkov, T.-T. Zuo, R. Ruess, B. Singh, L. Zhou, K. Kaup, J. Janek, L. Nazar, Energy Environ. Sci. 15 (9) (2022) 3933. https://doi.org/10.1039/D2EE00803C. doi: 10.1039/D2EE00803C

    44. [44]

      K. Gao, F. Yin, F. Mi, C. Sun, ACS Appl. Mater. Interfaces 17 (22) (2025) 32511. https://doi.org/10.1021/acsami.5c05879. doi: 10.1021/acsami.5c05879

    45. [45]

      B. Li, M.T. Sougrati, G. Rousse, A.V. Morozov, R. Dedryvère, A. Iadecola, A. Senyshyn, L. Zhang, A.M. Abakumov, M.-L. Doublet, et al., Nat. Chem. 13 (11) (2021) 1070. https://doi.org/10.1038/s41557-021-00775-2. doi: 10.1038/s41557-021-00775-2

    46. [46]

      J.R. Croy, K.G. Gallagher, M. Balasubramanian, Z. Chen, Y. Ren, D. Kim, S.-H. Kang, D.W. Dees, M.M. Thackeray, J. Phys. Chem. C 117 (13) (2013) 6525. https://doi.org/10.1021/jp312658q. doi: 10.1021/jp312658q

    47. [47]

      Y. Lu, C.-Z. Zhao, R. Zhang, H. Yuan, L.-P. Hou, Z.-H. Fu, X. Chen, J.-Q. Huang, Q. Zhang, Sci. Adv. 7 (38) (2021) eabi5520. https://doi.org/doi: 10.1126/sciadv.abi5520.

    48. [48]

      Y. Zhang, Y. Chen, M. Yan, F. Chen, J. Power Sources 283 (2015) 464. https://doi.org/10.1016/j.jpowsour.2015.02.107. doi: 10.1016/j.jpowsour.2015.02.107

    49. [49]

      Y. Yang, C. Gao, T. Luo, J. Song, T. Yang, H. Wang, K. Zhang, Y. Zuo, W. Xiao, Z. Jiang, et al., Adv. Mater. 35 (52) (2023) 2307138. https://doi.org/10.1002/adma.202307138. doi: 10.1002/adma.202307138

    50. [50]

      J. Ahn, J.H. Kim, B.W. Cho, K.Y. Chung, S. Kim, J.W. Choi, S.H. Oh, Nano Lett. 17 (12) (2017) 7869. https://doi.org/10.1021/acs.nanolett.7b04158. doi: 10.1021/acs.nanolett.7b04158

    51. [51]

      Y. Liu, Z. Yang, J. Li, B. Niu, K. Yang, F. Kang, J. Mater. Chem. A 6 (28) (2018) 13883. https://doi.org/10.1039/c8ta04568b. doi: 10.1039/c8ta04568b

    52. [52]

      Y. Liu, Z. Zhang, Y. Gao, G. Yang, C. Li, J. Zheng, A. Dou, Q. Wang, M. Su, J. Alloys Compd. 657 (2016) 37. https://doi.org/10.1016/j.jallcom.2015.10.060. doi: 10.1016/j.jallcom.2015.10.060

    53. [53]

      M. Yoon, Y. Dong, J. Hwang, J. Sung, H. Cha, K. Ahn, Y. Huang, S.J. Kang, J. Li, J. Cho, Nat. Energy 6 (4) (2021) 362. https://doi.org/10.1038/s41560-021-00782-0. doi: 10.1038/s41560-021-00782-0

    54. [54]

      Z. Yu, B. Singh, Y. Yu, L.F. Nazar, Nat. Mater. 24 (7) (2025) 1082. https://doi.org/10.1038/s41563-025-02238-2. doi: 10.1038/s41563-025-02238-2

    55. [55]

      W. Yan, Z. Mu, Z. Wang, Y. Huang, D. Wu, P. Lu, J. Lu, J. Xu, Y. Wu, T. Ma, et al., Nat. Energy 8 (8) (2023) 800. https://doi.org/10.1038/s41560-023-01279-8. doi: 10.1038/s41560-023-01279-8

    56. [56]

      Z. Wang, Q. Su, H. Deng, Y. Fu, ChemElectroChem 2 (9) (2015) 1292. https://doi.org/10.1002/celc.201500201. doi: 10.1002/celc.201500201

    57. [57]

      M.-J. Wang, A.-F. Shao, F.-D. Yu, G. Sun, D.-M. Gu, Z.-B. Wang, ACS Sustainable Chem. Eng. 7 (15) (2019) 12825. https://doi.org/10.1021/acssuschemeng.9b01719. doi: 10.1021/acssuschemeng.9b01719

    58. [58]

      G. Assat, D. Foix, C. Delacourt, A. Iadecola, R. Dedryvere, J.M. Tarascon, Nat. Commun. 8 (1) (2017) 2219. https://doi.org/10.1038/s41467-017-02291-9. doi: 10.1038/s41467-017-02291-9

    59. [59]

      W. Zhang, D.A. Weber, H. Weigand, T. Arlt, I. Manke, D. Schröder, R. Koerver, T. Leichtweiss, P. Hartmann, W.G. Zeier, et al., ACS Appl. Mater. Interfaces 9 (21) (2017) 17835. https://doi.org/10.1021/acsami.7b01137. doi: 10.1021/acsami.7b01137

    60. [60]

      A. Zhang, J. Wang, R. Yu, H. Zhuo, C. Wang, Z. Ren, J. Wang, ACS Appl. Mater. Interfaces 15 (6) (2023) 8190. https://doi.org/10.1021/acsami.2c21569. doi: 10.1021/acsami.2c21569

    61. [61]

      G.G. Khan, S. Ghosh, A. Sarkar, G. Mandal, G.D. Mukherjee, U. Manju, N. Banu, B.N. Dev, J. Appl. Phys. 118 (7) (2015) 074303. https://doi.org/10.1063/1.4928952. doi: 10.1063/1.4928952

    62. [62]

      C.H. Wang, G. Doornbos, G. Astromskas, G. Vellianitis, R. Oxland, M.C. Holland, M.L. Huang, C.H. Lin, C.H. Hsieh, Y.S. Chang, et al., AIP Adv. 4 (4) (2014) 047108. https://doi.org/10.1063/1.4871187. doi: 10.1063/1.4871187

    63. [63]

      X. Li, Q. Ye, Z. Wu, W. Zhang, H. Huang, Y. Xia, Y. Gan, X. He, X. Xia, J. Zhang, Electrochim. Acta 453 (2023) 142361. https://doi.org/10.1016/j.electacta.2023.142361. doi: 10.1016/j.electacta.2023.142361

    64. [64]

      D. Foix, M. Sathiya, E. McCalla, J.-M. Tarascon, D. Gonbeau, J. Phys. Chem. C 120 (2) (2016) 862. https://doi.org/10.1021/acs.jpcc.5b10475. doi: 10.1021/acs.jpcc.5b10475

    65. [65]

      L. Dahéron, R. Dedryvère, H. Martinez, M. Ménétrier, C. Denage, C. Delmas, D. Gonbeau, Chem. Mater. 20 (2) (2008) 583. https://doi.org/10.1021/cm702546s. doi: 10.1021/cm702546s

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  127
  • HTML全文浏览量:  12
文章相关
  • 发布日期:  2026-03-15
  • 收稿日期:  2025-07-08
  • 接受日期:  2025-10-14
  • 修回日期:  2025-09-16
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章