π-共轭扩展二萘并咔唑膦酸作为反式钙钛矿太阳能电池的空穴选择层

张善涛 侯天骜 王艳东 方志敏 吴宇 王灝霖 陈涛 陈爽 张文华 刘生忠 杨上峰

引用本文: 张善涛, 侯天骜, 王艳东, 方志敏, 吴宇, 王灝霖, 陈涛, 陈爽, 张文华, 刘生忠, 杨上峰. π-共轭扩展二萘并咔唑膦酸作为反式钙钛矿太阳能电池的空穴选择层[J]. 物理化学学报, 2026, 42(3): 100194. doi: 10.1016/j.actphy.2025.100194 shu
Citation:  Shantao Zhang, TianAo Hou, Yandong Wang, Zhimin Fang, Yu Wu, Haolin Wang, Tao Chen, Shuang Chen, Wenhua Zhang, Shengzhong (Frank) Liu, Shangfeng Yang. π-Conjugation-extended dinaphthocarbazole phosphonic acid as a hole-selective layer for inverted perovskite solar cells[J]. Acta Physico-Chimica Sinica, 2026, 42(3): 100194. doi: 10.1016/j.actphy.2025.100194 shu

π-共轭扩展二萘并咔唑膦酸作为反式钙钛矿太阳能电池的空穴选择层

    通讯作者: fangzm@yzu.edu.cn (方志敏); szliu@dicp.ac.cn (刘生忠); Email: sfyang@ustc.edu.cn (杨上峰)
摘要: 自组装单层(SAMs)是当前高效率反式钙钛矿太阳能电池(PSCs)中关键的空穴选择层材料(HSLs)。SAMs不仅决定了界面空穴的提取效率,还显著影响顶部钙钛矿层的薄膜质量,从而精细调控钙钛矿太阳能电池的效率和稳定性。本研究开发了一种新型SAM材料——(4-(8H-二萘并[2,3-c: 2',3'-g]咔唑-8-基)丁基)膦酸(4PADNC),它含有二萘并咔唑(DNC)结构单元,可作为反式PSCs的高性能HSL。与常用的咔唑类SAM (如4PACZ)相比,4PADNC中的DNC单元展现出扩展的π共轭特征,能够产生更大的分子偶极矩,从而调节氧化铟锡(ITO)电极的功函数,实现与钙钛矿能级的精准匹配,并显著降低界面能量损失。此外,该分子的非平面结构有效地抑制了ππ堆积,促进在ITO基底上形成致密且均匀的选择层,进而诱导高质量钙钛矿薄膜的沉积。得益于上述优势,采用4PADNC作为HSL的PSCs器件实现了24.32%的功率转换效率,显著优于基于4PACZ的参比器件(22.89%)。此外,基于4PADNC的器件还表现出卓越的热稳定性和运行稳定性。

English

    1. [1]

      Y. Liang, Y. Deng, S. Yu, J. Cheng, J. Song, J. Yao, Y. Yang, W. Zhang, W. Zhou, X. Zhang, et al., Acta Phys. Chim. Sin. 41 (2025) 100098, https://doi.org/10.1016/j.actphy.2025.100098. doi: 10.1016/j.actphy.2025.100098

    2. [2]

      M. Qi, L. Jin, H. Yao, Z. Xu, T. Cheng, Q. Chen, C. Zhu, Y. Bai, Acta Phys. Chim. Sin. 41 (2025) 100088, https://doi.org/10.1016/j.actphy.2025.100088. doi: 10.1016/j.actphy.2025.100088

    3. [3]

      S. Hu, J.A. Smith, H.J. Snaith, A. Wakamiya, Precis. Chem. 1 (2023) 69, https://doi.org/10.1021/prechem.3c00018. doi: 10.1021/prechem.3c00018

    4. [4]

      Z. Fang, T. Nie, N. Yan, J. Zhang, X. Ren, X. Guo, Y. Duan, J. Feng, S.F. Liu, Sci. China Mater. 66 (2023) 2107, https://doi.org/10.1007/s40843-022-2437-9 doi: 10.1007/s40843-022-2437-9

    5. [5]

      X. Li, Y. Shang, X. Wang, Z. Fang, T. Hou, D. Li, S. Gao, T. Chen, X. Pan, Z. Xiao, S. Yang, Nano Research Energy 4 (2025) e9120166, https://doi.org/10.26599/NRE.2025.9120166. doi: 10.26599/NRE.2025.9120166

    6. [6]

      Z. Li, B. Li, X. Wu, S.A. Sheppard, S. Zhang, D. Gao, N.J. Long, Z. Zhu, Science 376 (2022) 416, https://doi.org/10.1126/science.abm8566. doi: 10.1126/science.abm8566

    7. [7]

      Z. Liang, Y. Zhang, H. Xu, W. Chen, B. Liu, J. Zhang, H. Zhang, Z. Wang, D.-H. Kang, J. Zeng, et al., Nature 624 (2023) 557, https://doi.org/10.1038/s41586-023-06784-0. doi: 10.1038/s41586-023-06784-0

    8. [8]

      P. Chen, Y. Xiao, S. Li, X. Jia, D. Luo, W. Zhang, H.J. Snaith, Q. Gong, R. Zhu, Chem. Rev. 124 (2024) 10623, https://doi.org/10.1021/acs.chemrev.4c00073. doi: 10.1021/acs.chemrev.4c00073

    9. [9]

      F.H. Isikgor, S.T. Zhumagali, L.V. Merino, M.D. Bastiani, I. McCulloch, S.D. Wolf, Nat. Rev. Mater. 8 (2022) 89, https://doi.org/10.1038/s41578-022-00503-3. doi: 10.1038/s41578-022-00503-3

    10. [10]

      X. Wei, Y. Sun, Y. Zhang, B. Yu, H. Yu, Nano Energy, 133 (2025) 110513, https://doi.org/10.1016/j.nanoen.2024.110513 doi: 10.1016/j.nanoen.2024.110513

    11. [11]

      S.G. Kim, K. Zhu, Adv. Energy Mater. 13 (2023) 2300603, https://doi.org/10.1002/aenm.202300603. doi: 10.1002/aenm.202300603

    12. [12]

      P. Dong, Y. Jiang, Z. Yang, L. Liu, G. Li, X. Wen, Z. Wang, X. Shi, G. Zhou, J.-M. Liu, J. Gao, Acta Phys. Chim. Sin. 41 (2025) 100029, https://doi.org/10.3866/PKU.WHXB202407025. doi: 10.3866/PKU.WHXB202407025

    13. [13]

      S.Y. Kim, S.J. Cho, S.E. Byeon, X. He, H.J. Yoon, Adv. Energy Mater. 10 (2020) 2002606, https://doi.org/10.1002/aenm.202002606. doi: 10.1002/aenm.202002606

    14. [14]

      M. Li, M. Liu, F. Qi, F.R. Lin, A.K.Y. Jen, Chem. Rev. 124 (2024) 2138, https://doi.org/10.1021/acs.chemrev.3c00396. doi: 10.1021/acs.chemrev.3c00396

    15. [15]

      Q. Chen, C. Wang, Y. Li, L. Chen, J. Am. Chem. Soc. 142 (2020) 18281, https://doi.org/10.1021/jacs.0c07439. doi: 10.1021/jacs.0c07439

    16. [16]

      A. Asyuda, M. Gärtner, X. Wan, I. Burkhart, T. Saßmannshausen, A. Terfort, M. Zharnikov, J. Phys. Chem. C 124 (2020) 8775, https://doi.org/10.1021/acs.jpcc.0c00482. doi: 10.1021/acs.jpcc.0c00482

    17. [17]

      B. Yu, K. Wang, Y. Sun, H. Yu, Adv. Mater. 37 (2025) 2500708, https://doi.org/10.1002/adma.202500708 doi: 10.1002/adma.202500708

    18. [18]

      H. Zhou, W. Wang, Y. Duan, R. Sun, Y. Li, Z. Xie, D. Xu, M. Wu, Y. Wang, H. Li, et al., Angew. Chem. Int. Ed. 63 (2024) e202403068, https://doi.org/10.1002/anie.202403068. doi: 10.1002/anie.202403068

    19. [19]

      S. Zhang, X. Wang, Y. Wu, X. Li, T. Hou, D. Li, W. Chen, J. Li, R. Lv, Y. Zhang, et al., Angew. Chem. Int. Ed. 64 (2025) e202508782, https://doi.org/10.1002/anie.202508782. doi: 10.1002/anie.202508782

    20. [20]

      G. Qu, S. Cai, Y. Qiao, D. Wang, S. Gong, D. Khan, Y. Wang, K. Jiang, Q. Chen, L. Zhang, et al., Joule 8 (2024) 2123, https://doi.org/10.1016/j.joule.2024.05.005. doi: 10.1016/j.joule.2024.05.005

    21. [21]

      P. Han, Y. Zhang, Adv. Mater. 36 (2024) 2405630, https://doi.org/10.1002/adma.202405630. doi: 10.1002/adma.202405630

    22. [22]

      S. Ameen, D. Lee, A.B. Faheem, J.G. Son, Y. Lee, H. Yoo, S. Park, Y.S. Shin, J. Lee, J. Seo, et al., Angew. Chem. Int. Ed. 64 (2025) e202423206, https://doi.org/10.1002/anie.202423206. doi: 10.1002/anie.202423206

    23. [23]

      R. He, W. Wang, Z. Yi, F. Lang, C. Chen, J. Luo, J. Zhu, J. Thiesbrummel, S. Shah, K. Wei, et al., Nature 618 (2023) 80, https://doi.org/10.1038/s41586-023-05992-y. doi: 10.1038/s41586-023-05992-y

    24. [24]

      J. Du, J. Chen, B. Ouyang, A. Sun, C. Tian, R. Zhuang, C. Chen, S. Liu, Q. Chen, Z. Li, et al., Energy Environ. Sci. 18 (2025) 3196-3210, https://doi.org/10.1039/d4ee05849f. doi: 10.1039/d4ee05849f

    25. [25]

      W. Jiang, D. Wang, W. Shang, Y. Li, J. Zeng, P. Zhu, B. Zhang, L. Mei, X.-K. Chen, Z.-X. Xu, et al., Angew. Chem. Int. Ed. 63 (2024) e202411730, https://doi.org/10.1002/anie.202411730. doi: 10.1002/anie.202411730

    26. [26]

      S. Zhang, X. Jiang, X. Wang, Y. Gao, T. Hou, X. Teng, H. Wang, W. Chen, S. Gao, X. Li, et al., J. Energy Chem. 104 (2025) 136, https://doi.org/10.1016/j.jechem.2024.12.040. doi: 10.1016/j.jechem.2024.12.040

    27. [27]

      Z. Yi, W. Wang, R. He, J. Zhu, W. Jiao, Y. Luo, Y. Xu, Y. Wang, Z. Zeng, K. Wei, et al., Energy Environ. Sci. 17 (2024) 202, https://doi.org/10.1039/D3EE02839A. doi: 10.1039/D3EE02839A

    28. [28]

      A. Sun, C. Tian, R. Zhuang, C. Chen, Y. Zheng, X. Wu, C. Tang, Y. Liu, Z. Li, B. Ouyang, et al., Adv. Energy Mater. 14 (2024) 2303941, https://doi.org/10.1002/aenm.202303941. doi: 10.1002/aenm.202303941

    29. [29]

      W. Jiang, F. Li, M. Li, F. Qi, F.R. Lin, A. K.-Y. Jen, Angew. Chem. Int. Ed. 61 (2022) e202213560.https://doi.org/10.1002/anie.202213560. doi: 10.1002/anie.202213560

    30. [30]

      10.1039/d4ee03208j W. Peng, Y. Zhang, X. Zhou, J. Wu, D. Wang, G. Qu, J. Zeng, Y. Xu, B. Jiang, P. Zhu, et al., Energy Environ. Sci. 18 (2025) 874, https://doi.org/10.1039/d4ee03208j.

    31. [31]

      X. Yu, X. Sun, Z. Zhu, Z. 'a. Li, Angew. Chem. Int. Ed. 64 (2025) e202419608, https://doi.org/10.1002/anie.202419608. doi: 10.1002/anie.202419608

    32. [32]

      K. Matsumoto, K. Dougomori, S. Tachikawa, T. Ishii, M. Shindo, Org. Lett. 16 (2014) 4754, https://doi.org/10.1021/ol502197p. doi: 10.1021/ol502197p

    33. [33]

      Q. Tan, H. Wang, S. Tang, Q. Cai, G. Ma, L. Li, J. Guo, G. Xing, C. Chen, M. Cheng, Z. He, Adv. Funct. Mater. (2025) 2501147, https://doi.org/10.1002/adfm.202501147. doi: 10.1002/adfm.202501147

    34. [34]

      X. Tong, L. Xie, J. Li, Z. Pu, S. Du, M. Yang, Y. Gao, M. He, S. Wu, Y. Mai, Z. Ge, Adv. Mater. 36 (2024) 2407032, https://doi.org/10.1002/adma.202407032.

    35. [35]

      W. Wang, Z. Lin, S. Gao, W. Zhu, X. Song, W. Tang, Adv. Funct. Mater. 33 (2023) 2303653, https://doi.org/10.1002/adfm.202303653. doi: 10.1002/adfm.202303653

    36. [36]

      S. Qu, F. Yang, H. Huang, Y. Li, C. Sun, Q. Zhang, S. Du, L. Yan, Z. Lan, Z. Wang, T. Jiang, P. Cui, X. Ai, M. Li, Energy Environ. Sci. 18 (2025) 3186, https://doi.org/10.1039/d4ee05319b. doi: 10.1039/d4ee05319b

    37. [37]

      A.R. Pininti, A.S. Subbiah, C. Deger, I. Yavuz, A. Prasetio, P. Dally, V. Hnapovskyi, A.A. Said, L.V. Torres Merino, S. Mannar, et al., Adv. Energy Mater. 15 (2024) 2403530, https://doi.org/10.1002/aenm.202403530. doi: 10.1002/aenm.202403530

    38. [38]

      M.G. Helander, Z.B. Wang, J. Qiu, Z.H. Lu, Appl. Phys. Lett. 93 (2008) 193310, https://doi.org/10.1063/1.3030979. doi: 10.1063/1.3030979

    39. [39]

      J. Wu, P. Yan, D. Yang, H. Guan, S. Yang, X. Cao, X. Liao, P. Ding, H. Sun, Z. Ge, Adv. Mater. 36 (2024) 2401537, https://doi.org/10.1002/adma.202401537. doi: 10.1002/adma.202401537

    40. [40]

      L.V. Torres Merino, C.E. Petoukhoff, O. Matiash, A.S. Subbiah, C.V. Franco, P. Dally, B. Vishal, S. Kosar, D. Rosas Villalva, V. Hnapovskyi, et al., Joule 8 (2024) 2585, https://doi.org/10.1016/j.joule.2024.06.017. doi: 10.1016/j.joule.2024.06.017

    41. [41]

      W. Chen, Y.C. Zhou, L.J. Wang, Y.H. Wu, B. Tu, B.B. Yu, F.Z. Liu, H.-W. Tam, G. Wang, A.B. Djurišić, L. Huang, Z.B. He, Adv. Mater. 30 (2018) 1800515, https://doi.org/10.1002/adma.201800515. doi: 10.1002/adma.201800515

    42. [42]

      M. Stolterfoht, P. Caprioglio, C.M. Wolff, J.A. Márquez, J. Nordmann, S. Zhang, D. Rothhardt, U. Hörmann, Y. Amir, A. Redinger, et al., Energy Environ. Sci. 12 (2019) 2778, https://doi.org/10.1039/c9ee02020a. doi: 10.1039/c9ee02020a

    43. [43]

      J. Zhou, Y. Luo, R. Li, L. Tian, K. Zhao, J. Shen, D. Jin, Z. Peng, L. Yao, L. Zhang, et al., Nat. Chem. 17 (2025) 564, https://doi.org/10.1038/s41557-025-01732-z. doi: 10.1038/s41557-025-01732-z

    44. [44]

      C. Li, Z. Zhang, H. Zhang, W. Yan, Y. Li, L. Liang, W. Yu, X. Yu, Y. Wang, Y. Yang, M.K. Nazeeruddin, P. Gao, Angew. Chem. Int. Ed. 63 (2024) e202315281, https://doi.org/10.1002/anie.202315281. doi: 10.1002/anie.202315281

    45. [45]

      S. Zhang, F. Ye, X. Wang, R. Chen, H. Zhang, L. Zhan, X. Jiang, Y. Li, X. Ji, S. Liu, et al., Science 380 (2023) 404, https://doi.org/10.1126/science.adg3755. doi: 10.1126/science.adg3755

    46. [46]

      Z. Li, Q. Tan, G. Chen, H. Gao, J. Wang, X. Zhang, J. Xiu, W. Chen, Z. He, Nanoscale 15 (2023) 1676, https://doi.org/10.1039/d2nr05677a. doi: 10.1039/d2nr05677a

    47. [47]

      X. Jiang, B. Liu, X. Wu, S. Zhang, D. Zhang, X. Wang, S. Gao, Z. Huang, H. Wang, B. Li, Z. Xiao, T. Chen, A. K.-Y. Jen, S. Xiao, S. Yang, Z. Zhu, Adv. Mater. 36 (2024) 2313524, https://doi.org/10.1002/adma.202313524. doi: 10.1002/adma.202313524

    48. [48]

      F. Zhang, Y. Mei, Y. Jiang, S. Zheng, K. Zheng, Y. Zhou, Acta Phys. Chim. Sin. 41 (2025) 100118, https://doi.org/10.1016/j.actphy.2025.100118. doi: 10.1016/j.actphy.2025.100118

    49. [49]

      J. Liu, C. Ai, C. Hu, B. Cheng, J. Zhang, Acta Phys. Chim. Sin. 40 (2024) 2402006, https://doi.org/10.3866/PKU.WHXB202402006. doi: 10.3866/PKU.WHXB202402006

    50. [50]

      C. Shen, Y. Wu, H. Zhang, E. Li, W. Zhang, X. Xu, W. Wu, H. Tian, W.-H. Zhu, Angew. Chem. Int. Ed. 58 (2019) 3784, https://doi.org/10.1002/anie.201811593. doi: 10.1002/anie.201811593

    51. [51]

      H. Guo, H. Zhang, C. Shen, D. Zhang, S. Liu, Y. Wu, W.-H. Zhu, Angew. Chem. Int. Ed. 60 (2021) 2674, https://doi.org/10.1002/anie.202013128. doi: 10.1002/anie.202013128

    52. [52]

      H. Bi, Y. Fujiwara, G. Kapil, D. Tavgeniene, Z. Zhang, L. Wang, C. Ding, S.R. Sahamir, A.K. Baranwal, Y. Sanehira, et al., Adv. Funct. Mater. 33 (2023) 2300089, https://doi.org/10.1002/adfm.202300089. doi: 10.1002/adfm.202300089

    53. [53]

      G. Kim, H. Min, K.S. Lee, D.Y. Lee, S.M. Yoon, S.I. Seok, Science 370 (2020) 108, https://doi.org/10.1126/science.abc4417. doi: 10.1126/science.abc4417

    54. [54]

      I.L. Braly, H.W. Hillhouse, J. Phys. Chem. C 120 (2016) 893, https://doi.org/10.1021/acs.jpcc.5b10728. doi: 10.1021/acs.jpcc.5b10728

    55. [55]

      P. Caprioglio, M. Stolterfoht, C.M. Wolff, T. Unold, B. Rech, S. Albrecht, D. Neher, Adv. Energy Mater. 9 (2019) 1901631, https://doi.org/10.1002/aenm.201901631. doi: 10.1002/aenm.201901631

    56. [56]

      X. Li, S. Gao, X. Wu, Q. Liu, L. Zhu, C. Wang, Y. Wang, Z. Liu, W. Chen, X. Li, et al., Joule 8 (2024) 3169, https://doi.org/10.1016/j.joule.2024.07.009. doi: 10.1016/j.joule.2024.07.009

    57. [57]

      W. Zhou, L. Jia, M. Chen, X. Li, Z. Su, Y. Shang, X. Jiang, X. Gao, T. Chen, M. Wang, et al., Adv. Funct. Mater. 32 (2022) 2201374, https://doi.org/10.1002/adfm.202201374. doi: 10.1002/adfm.202201374

    58. [58]

      X. He, Q. Wang, S. Zhang, Y. Li, X. Weng, I. Ismail, C.-Q. Ma, S. Yang, Y. Cui, J. Energy Chem. 109 (2025) 177, https://doi.org/10.1016/j.jechem.2025.05.025. doi: 10.1016/j.jechem.2025.05.025

    59. [59]

      G. Wang, J. Zheng, W. Duan, J. Yang, M.A. Mahmud, Q. Lian, S. Tang, C. Liao, J. Bing, J. Yi, et al., Joule 7 (2023) 2583, https://doi.org/10.1016/j.joule.2023.09.007. doi: 10.1016/j.joule.2023.09.007

    60. [60]

      Y. Shang, X. Li, W. Lian, X. Jiang, X. Wang, T. Chen, Z. Xiao, M. Wang, Y. Lu, S. Yang, Chem. Eng. J. 457 (2023) 141246, https://doi.org/10.1016/j.cej.2022.141246. doi: 10.1016/j.cej.2022.141246

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  86
  • HTML全文浏览量:  9
文章相关
  • 发布日期:  2026-03-15
  • 收稿日期:  2025-07-17
  • 接受日期:  2025-09-23
  • 修回日期:  2025-09-13
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章