纳米材料相工程:从基础理论到应用前沿

毕帅 王习习 翟伟 史振宇 李子健 翟傈 张安 田玉辉 程婷 姚尧 吴直颖 刘佳玮 张华

引用本文: 毕帅, 王习习, 翟伟, 史振宇, 李子健, 翟傈, 张安, 田玉辉, 程婷, 姚尧, 吴直颖, 刘佳玮, 张华. 纳米材料相工程:从基础理论到应用前沿[J]. 物理化学学报, 2026, 42(3): 100188. doi: 10.1016/j.actphy.2025.100188 shu
Citation:  Shuai Bi, Xixi Wang, Wei Zhai, Zhenyu Shi, Zijian Li, Li Zhai, An Zhang, Yuhui Tian, Ting Cheng, Yao Yao, Zhiying Wu, Jiawei Liu, Hua Zhang. Phase engineering of nanomaterials: from fundamentals to application frontiers[J]. Acta Physico-Chimica Sinica, 2026, 42(3): 100188. doi: 10.1016/j.actphy.2025.100188 shu

纳米材料相工程:从基础理论到应用前沿

    通讯作者: Email: hua.zhang@cityu.edu.hk (张华)
摘要: 纳米材料的“相”(即原子排列方式)是决定其物理化学性质及功能的核心因素之一。近年来,纳米材料相工程(phase engineering of nanomaterials, PEN)已经成为材料科学领域新兴的研究方向。通过精确调控原子排列方式,PEN不仅能够突破材料常规的热力学稳定相的限制,还能赋予新的非常规相材料独特的物理化学性质和功能,为开发新型功能纳米材料提供了全新策略。本文系统综述了利用PEN策略来制备新的非常规相贵金属和过渡金属二硫族化合物(TMDs),总结了直接合成、诱导相变等关键制备方法,阐明了其相依赖的性质和催化性能,强调了相对其功能和应用的显著影响。同时,本文深入分析了当前研究中存在的挑战,提出了未来发展方向,包括合成机制的研究、非常规相材料的稳定性提升以及人工智能辅助设计等,以期为纳米材料相工程的基础研究与实际应用提供理论指导和技术参考。

English

    1. [1]

      D. Gentili, M. Gazzano, M. Melucci, D. Jones, M. Cavallini, Chem. Soc. Rev. 48 (2019) 2502, https://doi.org/10.1039/C8CS00283E. doi: 10.1039/C8CS00283E

    2. [2]

      V. Georgakilas, J. A. Perman, J. Tucek, R. Zboril, Chem. Rev. 115 (2015) 4744, https://doi.org/10.1021/cr500304f. doi: 10.1021/cr500304f

    3. [3]

      Y. Chen, Z. Lai, X. Zhang, Z. Fan, Q. He, C. Tan, H. Zhang, Nat. Rev. Chem. 4 (2020) 243, https://doi.org/10.1038/s41570-020-0173-4. doi: 10.1038/s41570-020-0173-4

    4. [4]

      Q. Yun, Y. Ge, Z. Shi, J. Liu, X. Wang, A. Zhang, B. Huang, Y. Yao, Q. Luo, L. Zhai, et al., Chem. Rev. 123 (2023) 13489, https://doi.org/10.1021/acs.chemrev.3c00459. doi: 10.1021/acs.chemrev.3c00459

    5. [5]

      W. Zhai, Z. Li, Y. Wang, L. Zhai, Y. Yao, S. Li, L. Wang, H. Yang, B. Chi, J. Liang, et al., Chem. Rev. 124 (2024) 4479, https://doi.org/10.1021/acs.chemrev.3c00931. doi: 10.1021/acs.chemrev.3c00931

    6. [6]

      B. Chen, Q. Yun, Y. Ge, L. Li, H. Zhang, Acc. Mater. Res. 4 (2023) 359, https://doi.org/10.1021/accountsmr.2c00238. doi: 10.1021/accountsmr.2c00238

    7. [7]

      Y. Ge, B. Huang, L. Li, Q. Yun, Z. Shi, B. Chen, H. Zhang, ACS Nano 17 (2023) 12935, https://doi.org/10.1021/acsnano.3c01922. doi: 10.1021/acsnano.3c01922

    8. [8]

      Y. Ge, Z. Shi, C. Tan, Y. Chen, H. Cheng, Q. He, H. Zhang, Chem 6 (2020) 1237, https://doi.org/10.1016/j.chempr.2020.04.004. doi: 10.1016/j.chempr.2020.04.004

    9. [9]

      C. Chang, W. Chen, Y. Chen, Y. Chen, Y. Chen, F. Ding, C. Fan, H. J. Fan, Z. Fan, C. Gong, et al., Acta Phys.-Chim. Sin. 37 (2021) 2108017, https://doi.org/10.3866/PKU.WHXB202108017.

    10. [10]

      Y. Wang, W. Zhai, Y. Ren, Q. Zhang, Y. Yao, S. Li, Q. Yang, X. Zhou, Z. Li, B. Chi, et al., Adv. Mater. 36 (2024) 2307269, https://doi.org/10.1002/adma.202307269. doi: 10.1002/adma.202307269

    11. [11]

      Y. Chen, J. Liu, Q. Yun, H. Cheng, X. Cui, Z. Fan, L. Fu, C. Gao, J. Ge, Y. Ge, et al. Chem. Res. Chin. Univ. 41 (2025) 370, https://doi.org/10.1007/s40242-025-5055-3. doi: 10.1007/s40242-025-5055-3

    12. [12]

      X. Huang, Z. Zeng, S. Bao, M. Wang, X. Qi, Z. Fan, H. Zhang, Nat. Commun. 4 (2013) 1444, https://doi.org/10.1038/ncomms2472. doi: 10.1038/ncomms2472

    13. [13]

      X. Huang, S. Li, Y. Huang, S. Wu, X. Zhou, S. Li, C. L. Gan, F. Boey, C. A. Mirkin, H. Zhang, Nat. Commun. 2 (2011) 292, https://doi.org/10.1038/ncomms1291. doi: 10.1038/ncomms1291

    14. [14]

      X. Huang, S. Li, S. Wu, Y. Huang, F. Boey, C. L. Gan, H. Zhang, Adv. Mater. 24 (2012) 979, https://doi.org/10.1002/adma.201104153. doi: 10.1002/adma.201104153

    15. [15]

      C. Tan, H. Zhang, Nat. Commun. 6 (2015) 7873, https://doi.org/10.1038/ncomms8873. doi: 10.1038/ncomms8873

    16. [16]

      Z. Li, L. Zhai, Y. Ge, Z. Huang, Z. Shi, J. Liu, W. Zhai, J. Liang, H. Zhang, Natl. Sci. Rev. 9 (2022) nwab142, https://doi.org/10.1093/nsr/nwab142. doi: 10.1093/nsr/nwab142

    17. [17]

      Q. Yun, Y. Ge, B. Huang, Q. Wa, H. Zhang, Acc. Chem. Res. 56 (2023) 1780, https://doi.org/10.1021/acs.accounts.3c00121. doi: 10.1021/acs.accounts.3c00121

    18. [18]

      A. Janssen, Q. N. Nguyen, Y. Xia, Angew. Chem. Int. Ed. 60 (2021) 12192, https://doi.org/10.1002/anie.202017076. doi: 10.1002/anie.202017076

    19. [19]

      G. Wang, C. Ma, L. Zheng, Y. Chen, J. Mater. Chem. A 9 (2021) 19534, https://doi.org/10.1039/D1TA03666A. doi: 10.1039/D1TA03666A

    20. [20]

      Z. Fan, M. Bosman, X. Huang, D. Huang, Y. Yu, K. Ong, Y. Akimov, L. Wu, B. Li, J. Wu, et al., Nat. Commun. 6 (2015) 7684, https://doi.org/10.1038/ncomms8684. doi: 10.1038/ncomms8684

    21. [21]

      Y. Chen, Z. Fan, Z. Luo, X. Liu, Z. Lai, B. Li, Y. Zong, L. Gu, H. Zhang, Adv. Mater. 29 (2017) 1701331, https://doi.org/10.1002/adma.201701331. doi: 10.1002/adma.201701331

    22. [22]

      J. Liu, W. Niu, G. Liu, B. Chen, J. Huang, H. Cheng, D. Hu, J. Wang, Q. Liu, J. Ge, et al., J. Am. Chem. Soc. 143 (2021) 4387, https://doi.org/10.1021/jacs.1c00612. doi: 10.1021/jacs.1c00612

    23. [23]

      Z. Fan, M. Bosman, Z. Huang, Y. Chen, C. Ling, L. Wu, Y. A. Akimov, R. Laskowski, B. Chen, P. Ercius, et al., Nat. Commun. 11 (2020) 3293, https://doi.org/10.1038/s41467-020-17068-w. doi: 10.1038/s41467-020-17068-w

    24. [24]

      Z. Zhang, G. Liu, X. Cui, Y. Gong, D. Yi, Q. Zhang, C. Zhu, F. Saleem, B. Chen, Z. Lai, et al. Sci. Adv. 7 (2021) eabd6647, https://doi.org/10.1126/sciadv.abd6647. doi: 10.1126/sciadv.abd6647

    25. [25]

      C.-H. Lu, F.-C. Chang, ACS Catal. 1 (2011) 481, https://doi.org/10.1021/cs200106s. doi: 10.1021/cs200106s

    26. [26]

      Y. Ge, Z. Huang, C. Ling, B. Chen, G. Liu, M. Zhou, J. Liu, X. Zhang, H. Cheng, G. Liu, et al., J. Am. Chem. Soc. 142 (2020) 18971, https://doi.org/10.1021/jacs.0c09461. doi: 10.1021/jacs.0c09461

    27. [27]

      Y. Ge, J. Ge, B. Huang, X. Wang, G. Liu, X.-H. Shan, L. Ma, B. Chen, G. Liu, S. Du, et al., Nano Res. 16 (2023) 4650, https://doi.org/10.1007/s12274-022-5101-0. doi: 10.1007/s12274-022-5101-0

    28. [28]

      N. Yang, H. Cheng, X. Liu, Q. Yun, Y. Chen, B. Li, B. Chen, Z. Zhang, X. Chen, Q. Lu, et al., Adv. Mater. 30 (2018) 1803234, https://doi.org/10.1002/adma.201803234. doi: 10.1002/adma.201803234

    29. [29]

      H. Cheng, N. Yang, X. Liu, Q. Yun, M. Goh, B. Chen, X. Qi, Q. Lu, X. Chen, W. Liu, et al., Natl. Sci. Rev. 6 (2019) 955, https://doi.org/10.1093/nsr/nwz078. doi: 10.1093/nsr/nwz078

    30. [30]

      J. Ge, P. Yin, Y. Chen, H. Cheng, J. Liu, B. Chen, C. Tan, P. F. Yin, H. X. Zheng, Q. Q. Li, et al., Adv. Mater. 33 (2021) 2006711, https://doi.org/10.1002/adma.202006711. doi: 10.1002/adma.202006711

    31. [31]

      Q. Yun, Q. Lu, C. Li, B. Chen, Q. Zhang, Q. He, Z. Hu, Z. Zhang, Y. Ge, N. Yang, et al., ACS Nano 13 (2019) 14329, https://doi.org/10.1021/acsnano.9b07775. doi: 10.1021/acsnano.9b07775

    32. [32]

      C. Tan, J. Chen, X. J. Wu, H. Zhang, Nat. Rev. Mater. 3 (2018) 17089, https://doi.org/10.1038/natrevmats.2017.89. doi: 10.1038/natrevmats.2017.89

    33. [33]

      Y. Xia, K. D. Gilroy, H. C. Peng, X. Xia, Angew. Chem. Int. Ed. 56 (2017) 60, https://doi.org/10.1002/anie.201604731. doi: 10.1002/anie.201604731

    34. [34]

      Z. Fan, X. Huang, Y. Han, M. Bosman, Q. Wang, Y. Zhu, Q. Liu, B. Li, Z. Zeng, J. Wu, et al., Nat. Commun. 6 (2015) 6571, https://doi.org/10.1038/ncomms7571. doi: 10.1038/ncomms7571

    35. [35]

      Z. Fan, Z. Luo, X. Huang, B. Li, Y. Chen, J. Wang, Y. Hu, H. Zhang, J. Am. Chem. Soc. 138 (2016) 1414, https://doi.org/10.1021/jacs.5b12715. doi: 10.1021/jacs.5b12715

    36. [36]

      Z. Fan, Y. Chen, Y. Zhu, J. Wang, B. Li, Y. Zong, Y. Han, H. Zhang, Chem. Sci. 8 (2017) 795, https://doi.org/10.1039/C6SC02953A. doi: 10.1039/C6SC02953A

    37. [37]

      Y. Chen, Z. Fan, J. Wang, C. Ling, W. Niu, Z. Huang, G. Liu, B. Chen, Z. Lai, X. Liu, et al., J. Am. Chem. Soc. 142 (2020) 12760, https://doi.org/10.1021/jacs.0c04981. doi: 10.1021/jacs.0c04981

    38. [38]

      X. Zhou, Y. Ma, Y. Ge, S. Zhu, Y. Cui, B. Chen, L. Liao, Q. Yun, Z. He, H. Long, et al., J. Am. Chem. Soc. 144 (2022) 547, https://doi.org/10.1021/jacs.1c11313. doi: 10.1021/jacs.1c11313

    39. [39]

      W. Niu, J. Liu, J. Huang, B. Chen, Q. He, A. L. Wang, Q. Lu, Y. Chen, Q. Yun, J. Wang, et al., Nat. Commun. 10 (2019) 2881, https://doi.org/10.1038/s41467-019-10764-2. doi: 10.1038/s41467-019-10764-2

    40. [40]

      Q. Lu, A.L. Wang, Y. Gong, W. Hao, H. Cheng, J. Chen, B. Li, N. Yang, W. Niu, J. Wang, et al., Nat. Chem. 10 (2018) 456, https://doi.org/10.1038/s41557-018-0012-0. doi: 10.1038/s41557-018-0012-0

    41. [41]

      Y. Ge, X. Wang, B. Chen, Z. Huang, Z. Shi, B. Huang, J. Liu, G. Wang, Y. Chen, L. Li, et al., Adv. Mater. 34 (2022) 2107399, https://doi.org/10.1002/adma.202107399.s doi: 10.1002/adma.202107399

    42. [42]

      X. Wang, Y. Ge, Q. Zhang, T. Lin, B. Chen, L. Li, Z. Huang, Q. Yun, X. Zhou, Z. Shi, et al., Nat. Sci. 2 (2022) e20220026, https://doi.org/10.1002/ntls.20220026. doi: 10.1002/ntls.20220026

    43. [43]

      X. Wang, Y. Ge, M. Sun, Z. Xu, B. Huang, L. Li, X. Zhou, S. Zhang, G. Liu, Z. Shi, et al., J. Am. Chem. Soc. 146 (2024) 24141, https://doi.org/10.1021/jacs.4c08905. doi: 10.1021/jacs.4c08905

    44. [44]

      Y. Ge, X. Wang, B. Huang, Z. Huang, B. Chen, C. Ling, J. Liu, G. Liu, J. Zhang, G. Wang, et al., J. Am. Chem. Soc. 143 (2021) 17292, https://doi. org/HTTPS://DOI.ORG/10.1021/jacs.1c08973. doi: 10.1021/jacs.1c08973

    45. [45]

      H. Cheng, C. Wang, D. Qin, Y. Xia, Acc. Chem. Res. 56 (2023) 900, https://doi.org/10.1021/acs.accounts.3c00067. doi: 10.1021/acs.accounts.3c00067

    46. [46]

      F. Saleem, G. Liu, G. Liu, B. Chen, Q. Yun, Y. Ge, A. Zhang, X. Wang, X. Zhou, G. Wang, et al., Small Methods 8 (2024) 2400430, https://doi.org/10.1002/smtd.202400430. doi: 10.1002/smtd.202400430

    47. [47]

      Q. Lu, A. L. Wang, H. Cheng, Y. Gong, Q. Yun, N. Yang, B. Li, B. Chen, Q. Zhang, Y. Zong, et al., Small 14 (2018) 1801090, https://doi.org/10.1002/smll.201801090. doi: 10.1002/smll.201801090

    48. [48]

      B. H. Kim, M. J. Hackett, J. Park, T. Hyeon, Chem. Mater. 26 (2014) 59, https://doi.org/10.1021/cm402225z. doi: 10.1021/cm402225z

    49. [49]

      J. Huang, Z. Li, H. Duan, Z. Cheng, Y. Li, J.F. Zhu, R. Yu, J. Am. Chem. Soc. 139 (2017) 575, https://doi.org/10.1021/jacs.6b09730. doi: 10.1021/jacs.6b09730

    50. [50]

      H. Cheng, N. Yang, G. Liu, Y. Ge, J. Huang, Q. Yun, Y. Du, C. J. Sun, B. Chen, J. Liu, et al. Adv. Mater. 32 (2020) 1902964, https://doi.org/10.1002/adma.201902964. doi: 10.1002/adma.201902964

    51. [51]

      P. Li, Y. Han, X. Zhou, Z. Fan, S. Xu, K. Cao, F. Meng, L. Gao, J. Song, H. Zhang, Matter 2 (2020) 658, https://doi.org/10.1016/j.matt.2019.10.003. doi: 10.1016/j.matt.2019.10.003

    52. [52]

      F. Bai, K. Bian, X. Huang, Z. Wang, H. Fan, Chem. Rev. 119 (2019) 7673, https://doi.org/10.1021/acs.chemrev.9b00023. doi: 10.1021/acs.chemrev.9b00023

    53. [53]

      Q. Li, W. Niu, X. Liu, Y. Chen, X. Wu, X. Wen, Z. Wang, H. Zhang, Z. Quan, J. Am. Chem. Soc. 140 (2018) 15783, https://doi.org/10.1021/jacs.8b08647. doi: 10.1021/jacs.8b08647

    54. [54]

      C. Xie, W. Niu, P. Li, Y. Ge, J. Liu, Z. Fan, X. Liu, Y. Chen, M. Zhou, Z. Li, et al. Nano Res. 15 (2022) 6678, https://doi.org/10.1007/s12274-022-4226-5. doi: 10.1007/s12274-022-4226-5

    55. [55]

      Q. Li, H. Cheng, C. Xing, S. Guo, X. Wu, L. Zhang, D. Zhang, X. Liu, X. Wen, X. Lu, et al., Small 18 (2022) 2106396, https://doi.org/10.1002/smll.202106396. doi: 10.1002/smll.202106396

    56. [56]

      X. Huang, H. Li, S. Li, S. Wu, F. Boey, J. Ma, H. Zhang, Angew. Chem. Int. Ed. 50 (2011) 12245, https://doi.org/10.1002/anie.201105850. doi: 10.1002/anie.201105850

    57. [57]

      Z. Fan, Y. Zhu, X. Huang, Y. Han, Q. Wang, Q. Liu, Y. Huang, C. L. Gan, H. Zhang, Angew. Chem. Int. Ed. 54 (2015) 5672, https://doi.org/10.1002/anie.201500993. doi: 10.1002/anie.201500993

    58. [58]

      F. Saleem, X. Cui, Z. Zhang, Z. Liu, J. Dong, B. Chen, Y. Chen, H. Cheng, X. Zhang, F. Ding, et al., Small 15 (2019) 1903253, https://doi.org/10.1002/smll.201903253. doi: 10.1002/smll.201903253

    59. [59]

      X. Han, G. Wu, Y. Ge, S. Yang, D. Rao, Z. Guo, Y. Zhang, M. Yan, H. Zhang, L. Gu, et al., Adv. Mater. 34 (2022) 2206994, https://doi.org/10.1002/adma.202206994. doi: 10.1002/adma.202206994

    60. [60]

      A. Kismarahardja, Z. Wang, D. Li, L. Wang, L. Fu, Y. Chen, Z. Fan, Y. Chen, X. Han, H. Zhang, X. Liao, ACS Nano 16 (2022) 3272, https://doi.org/10.1021/acsnano.1c11166. doi: 10.1021/acsnano.1c11166

    61. [61]

      H. Benaissa, M. Ferhat, Superlattices Microstruct. 109 (2017) 170, https://doi.org/10.1016/j.spmi.2017.04.049. doi: 10.1016/j.spmi.2017.04.049

    62. [62]

      Z. Shi, Y. Ge, Q. Yun, H. Zhang, Acc. Chem. Res. 55 (2022) 3581, https://doi.org/10.1021/acs.accounts.2c00579. doi: 10.1021/acs.accounts.2c00579

    63. [63]

      C. Tan, X. Cao, X. J. Wu, Q. He, J. Yang, X. Zhang, J. Chen, W. Zhao, S. Han, G. H. Nam, et al., Chem. Rev. 117 (2017) 6225, https://doi.org/10.1021/acs.chemrev.6b00558. doi: 10.1021/acs.chemrev.6b00558

    64. [64]

      X. Zhang, Z. Lai, Q. Ma, H. Zhang, Chem. Soc. Rev. 47 (2018) 3301, https://doi.org/10.1039/C8CS00094H. doi: 10.1039/C8CS00094H

    65. [65]

      M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, H. Zhang, Nat. Chem. 5 (2013) 263, https://doi.org/10.1038/nchem.1589. doi: 10.1038/nchem.1589

    66. [66]

      S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, A. Kis, Nat. Rev. Mater. 2 (2017) 17033, https://doi.org/10.1038/natrevmats.2017.33. doi: 10.1038/natrevmats.2017.33

    67. [67]

      J. Zhou, J. Lin, X. Huang, Y. Zhou, Y. Chen, J. Xia, H. Wang, Y. Xie, H. Yu, J. Lei, et al., Nature 556 (2018) 355, https://doi.org/10.1038/s41586-018-0008-3. doi: 10.1038/s41586-018-0008-3

    68. [68]

      T. Li, W. Guo, L. Ma, W. Li, Z. Yu, Z. Han, S. Gao, L. Liu, D. Fan, Z. Wang, et al., Nat. Nanotechnol. 16 (2021) 1201, https://doi.org/10.1038/s41565-021-00963-8. doi: 10.1038/s41565-021-00963-8

    69. [69]

      R. Kappera, D. Voiry, S. E. Yalcin, B. Branch, G. Gupta, A. D. Mohite, M. Chhowalla, Nat. Mater. 13 (2014) 1128, https://doi.org/10.1038/nmat4080. doi: 10.1038/nmat4080

    70. [70]

      M. Acerce, D. Voiry, M. Chhowalla, Nat. Nanotechnol. 10 (2015) 313, https://doi.org/10.1038/nnano.2015.40. doi: 10.1038/nnano.2015.40

    71. [71]

      G. H. Nam, Q. He, X. Wang, Y. Yu, J. Chen, K. Zhang, Z. Yang, D. Hu, Z. Lai, B. Li, et al., Adv. Mater. 31 (2019) 1807764, https://doi.org/10.1002/adma.201807764. doi: 10.1002/adma.201807764

    72. [72]

      X. Yin, C. S. Tang, Y. Zheng, J. Gao, J. Wu, H. Zhang, M. Chhowalla, W. Chen, A.T.S. Wee, et al., Chem. Soc. Rev. 50 (2021) 10087, https://doi.org/10.1039/D1CS00236H. doi: 10.1039/D1CS00236H

    73. [73]

      W. Zhai, J. Qi, C. Xu, B. Chen, Z. Li, Y. Wang, L. Zhai, Y. Yao, S. Li, Q. Zhang, et al., J. Am. Chem. Soc. 145 (2023) 13444, https://doi.org/10.1021/jacs.3c03776. doi: 10.1021/jacs.3c03776

    74. [74]

      Y. Yu, G. H. Nam, Q. He, X. J. Wu, K. Zhang, Z. Yang, J. Chen, Q. Ma, M. Zhao, Z. Liu, et al., Nat. Chem. 10 (2018) 638, https://doi.org/10.1038/s41557-018-0035-6. doi: 10.1038/s41557-018-0035-6

    75. [75]

      Z. Lai, Q. He, T. H. Tran, D. V. M. Repaka, D. D. Zhou, Y. Sun, S. Xi, Y. Li, A. Chaturvedi, C. Tan, et al., Nat. Mater. 20 (2021) 1113, https://doi.org/10.1038/s41563-021-00971-y. doi: 10.1038/s41563-021-00971-y

    76. [76]

      Y. Sun, M. Terrones, R. E. Schaak, Acc. Chem. Res. 54 (2021) 1517, https://doi.org/10.1021/acs.accounts.1c00006. doi: 10.1021/acs.accounts.1c00006

    77. [77]

      M. S. Sokolikova, C. Mattevi, Chem. Soc. Rev. 49 (2020) 3952, https://doi.org/10.1039/D0CS00143K. doi: 10.1039/D0CS00143K

    78. [78]

      B. Mahler, V. Hoepfner, K. Liao, G. A. Ozin, J. Am. Chem. Soc. 136 (2014) 14121, https://doi.org/10.1021/ja506261t. doi: 10.1021/ja506261t

    79. [79]

      M. S. Sokolikova, P. C. Sherrell, P. Palczynski, V. L. Bemmer, C. Mattevi, Nat. Commun. 10 (2019) 712, https://doi.org/10.1038/s41467-019-08594-3. doi: 10.1038/s41467-019-08594-3

    80. [80]

      Z. Liu, K. Nie, X. Qu, X. Li, B. Li, Y. Yuan, S. Chong, P. Liu, Y. Li, Z. Yin, et al., J. Am. Chem. Soc. 144 (2022) 4863, https://doi.org/10.1021/jacs.1c12379. doi: 10.1021/jacs.1c12379

    81. [81]

      X. Geng, W. Sun, W. Wu, B. Chen, A. Al-Hilo, M. Benamara, H. Zhu, F. Watanabe, J. Cui, T. P. Chen, Nat. Commun. 7 (2016) 10672, https://doi.org/10.1038/ncomms10672. doi: 10.1038/ncomms10672

    82. [82]

      Z. Li, L. Zhai, Q. Zhang, W. Zhai, P. Li, B. Chen, C. Chen, Y. Yao, Y. Ge, H. Yang, et al., Nat. Mater. 23 (2024) 1355, https://doi.org/10.1038/s41563-024-01860-w. doi: 10.1038/s41563-024-01860-w

    83. [83]

      F. Wypych, R. Schöllhorn, J. Chem. Soc., Chem. Commun. 24 (1992) 1386, https://doi.org/10.1039/C39920001386. doi: 10.1039/C39920001386

    84. [84]

      J. Peng, Y. Liu, X. Luo, J. Wu, Y. Lin, Y. Guo, J. Zhao, X. Wu, C. Wu, Y. Xie, Adv. Mater. 31 (2019) e1900568, https://doi.org/10.1002/adma.201900568. doi: 10.1002/adma.201900568

    85. [85]

      Z. Lai, Y. Yao, S. Li, L. Ma, Q. Zhang, Y. Ge, W. Zhai, B. Chi, B. Chen, L. Li, et al., Adv. Mater. 34 (2022) e2201194, https://doi.org/10.1002/adma.202201194. doi: 10.1002/adma.202201194

    86. [86]

      F. Liu, Y. Zou, X. Tang, L. Mao, D. Du, H. Wang, M. Zhang, Z. Wang, N. Yao, W. Zhao, et al., Adv. Funct. Mater. 32 (2022) 2204601, https://doi.org/10.1002/adfm.202204601. doi: 10.1002/adfm.202204601

    87. [87]

      T. Cheng, L. Sun, Z. Liu, F. Ding, Z. Liu, Acta Phys.-Chim. Sin. 38 (2022) 2012006, https://doi.org/10.3866/PKU.WHXB202012006. doi: 10.3866/PKU.WHXB202012006

    88. [88]

      L. Liu, J. Wu, L. Wu, M. Ye, X. Liu, Q. Wang, S. Hou, P. Lu, L. Sun, J. Zheng, et al., Nat. Mater. 17 (2018) 1108, https://doi.org/10.1038/s41563-018-0187-1. doi: 10.1038/s41563-018-0187-1

    89. [89]

      M. Okada, J. Pu, Y. C. Lin, T. Endo, N. Okada, W. H. Chang, A. K. A. Lu, T. Nakanishi, T. Shimizu, T. Kubo, et al., ACS Nano 16 (2022) 13069, https://doi.org/10.1021/acsnano.2c05699. doi: 10.1021/acsnano.2c05699

    90. [90]

      G. Eda, T. Fujita, H. Yamaguchi, D. Voiry, M. Chen, M. Chhowalla, ACS Nano 6 (2012) 7311, https://doi.org/10.1021/nn302422x. doi: 10.1021/nn302422x

    91. [91]

      Z. Wang, R. Li, C. Su, K. P. Loh, SmartMat 1 (2020) e1013, https://doi.org/10.1002/smm2.1013. doi: 10.1002/smm2.1013

    92. [92]

      C. Tan, Z. Luo, A. Chaturvedi, Y. Cai, Y. Du, Y. Gong, Y. Huang, Z. Lai, X. Zhang, L. Zheng, et al., Adv. Mater. 30 (2018) 1705509, https://doi.org/10.1002/adma.201705509. doi: 10.1002/adma.201705509

    93. [93]

      D. Voiry, M. Salehi, R. Silva, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, M. Chhowalla, Nano Lett. 13 (2013) 6222, https://doi.org/10.1021/nl403661s. doi: 10.1021/nl403661s

    94. [94]

      S. J. Tan, I. Abdelwahab, Z. Ding, X. Zhao, T. Yang, G. Z. Loke, H. Lin, I. Verzhbitskiy, S. M. Poh, H. Xu, et al., J. Am. Chem. Soc. 139 (2017) 2504, https://doi.org/10.1021/jacs.6b13238. doi: 10.1021/jacs.6b13238

    95. [95]

      Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He, G. Lu, F. Boey, H. Zhang, Angew. Chem. Int. Ed. 50 (2011) 11093, https://doi.org/10.1002/anie.201106004. doi: 10.1002/anie.201106004

    96. [96]

      Z. Zeng, T. Sun, J. Zhu, X. Huang, Z. Yin, G. Lu, Z. Fan, Q. Yan, H. H. Hng, H. Zhang, Angew. Chem. Int. Ed. 51 (2012) 9052, https://doi.org/10.1002/anie.201204208. doi: 10.1002/anie.201204208

    97. [97]

      G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla, Nano Lett. 11 (2011) 5111, https://doi.org/10.1021/nl201874w. doi: 10.1021/nl201874w

    98. [98]

      Y. C. Lin, D. O. Dumcenco, Y. S. Huang, K. Suenaga, Nat. Nanotechnol. 9 (2014) 391, https://doi.org/10.1038/nnano.2014.64. doi: 10.1038/nnano.2014.64

    99. [99]

      D. H. Keum, S. Cho, J. H. Kim, D. H. Choe, H. J. Sung, M. Kan, H. Kang, J. Y. Hwang, S. W. Kim, H. Yang, et al., Nat. Photonics 11 (2015) 482, https://doi.org/10.1038/nphys3314.

    100. [100]

      X. Yin, Q. Wang, L. Cao, C. S. Tang, X. Luo, Y. Zheng, L. M. Wong, S. J. Wang, S. Y. Quek, W. Zhang, et al., Nat. Commun. 8 (2017) 486, https://doi.org/10.1038/s41467-017-00640-2. doi: 10.1038/s41467-017-00640-2

    101. [101]

      S. Cho, S. Kim, J. H. Kim, J. Zhao, J. Seok, D. H. Keum, J. Baik, D. H. Choe, K. J. Chang, K. Suenaga, et al., Science 349 (2015) 625, https://doi.org/10.1126/science.aab3175. doi: 10.1126/science.aab3175

    102. [102]

      J. Zhu, Z. Wang, H. Yu, N. Li, J. Zhang, J. Meng, M. Liao, J. Zhao, X. Lu, L. Du, et al., J. Am. Chem. Soc. 139 (2017) 10216, https://doi.org/10.1021/jacs.7b05765. doi: 10.1021/jacs.7b05765

    103. [103]

      Y. Qi, Q. Xu, Y. Wang, B. Yan, Y. Ren, Z. Chen, ACS Nano 10 (2016) 2903, https://doi.org/10.1021/acsnano.6b00001. doi: 10.1021/acsnano.6b00001

    104. [104]

      K. A. Duerloo, Y. Li, E. J. Reed, Nat. Commun. 5 (2014) 4214, https://doi.org/10.1038/ncomms5214. doi: 10.1038/ncomms5214

    105. [105]

      S. Song, D. H. Keum, S. Cho, D. Perello, Y. Kim, Y. H. Lee, Nano Lett. 16 (2016) 188, https://doi.org/10.1021/acs.nanolett.5b03481. doi: 10.1021/acs.nanolett.5b03481

    106. [106]

      S. Kuppan, Y. Xu, Y. Liu, G. Chen, Nat. Commun. 8 (2017) 14309, https://doi.org/10.1038/ncomms14309. doi: 10.1038/ncomms14309

    107. [107]

      Z. Liu, X. Kong, F. Ding, Adv. Funct. Mater. 34 (2024) 2409382, https://doi.org/10.1002/adfm.202409382. doi: 10.1002/adfm.202409382

    108. [108]

      C. Mu, Z. Liu, Q. Yao, Q. He, J. Xie, SmartMat 6 (2025) e1317, https://doi.org/10.1002/smm2.1317. doi: 10.1002/smm2.1317

    109. [109]

      X. Zhang, Z. Luo, P. Yu, Y. Cai, Y. Du, D. Wu, S. Gao, C. Tan, Z. Li, M. Ren, et al., Nat. Catal. 1 (2018) 460, https://doi.org/10.1038/s41929-018-0072-y. doi: 10.1038/s41929-018-0072-y

    110. [110]

      Z. Shi, X. Zhang, X. Lin, G. Liu, C. Ling, S. Xi, B. Chen, Y. Ge, C. Tan, Z. Lai, et al., Nature 621 (2023) 300, https://doi.org/10.1038/s41586-023-06339-3. doi: 10.1038/s41586-023-06339-3

    111. [111]

      P. Rao, D. Wu, T.-J. Wang, J. Li, P. Deng, Q. Chen, Y. Shen, Y. Chen, X. Tian, eScience 2 (2022) 399, https://doi.org/10.1016/j.esci.2022.05.004. doi: 10.1016/j.esci.2022.05.004

    112. [112]

      H. Yang, Y. Liu, X. Liu, X. Wang, H. Tian, G. I. N. Waterhouse, P. E. Kruger, S. G. Telfer, S. Ma, eScience 2 (2022) 227, https://doi.org/10.1016/j.esci.2022.02.005. doi: 10.1016/j.esci.2022.02.005

    113. [113]

      X. Zhou, H. Liu, B. Y. Xia, K. Ostrikov, Y. Zheng, S.-Z. Qiao, SmartMat 3 (2022) 111, https://doi.org/10.1002/smm2.1109. doi: 10.1002/smm2.1109

    114. [114]

      J. Su, Y. Liu, Y. Song, L. Huang, W. Guo, X. Cao, Y. Dou, L. Cheng, G. Li, Q. Hu, et al., SmartMat 3 (2022) 35, https://doi.org/10.1002/smm2.1106. doi: 10.1002/smm2.1106

    115. [115]

      Y. Wang, C. Li, Z. Fan, Y. Chen, X. Li, L. Cao, C. Wang, L. Wang, D. Su, H. Zhang, T. Mueller, C. Wang, Nano Lett. 20 (2020) 8074, https://doi.org/10.1021/acs.nanolett.0c03073. doi: 10.1021/acs.nanolett.0c03073

    116. [116]

      P. F. Yin, J. Fu, Q. Yun, B. Chen, G. Liu, L. Li, Z. Huang, Y. Ge, H. Zhang, Adv. Mater. 34 (2022) 2201114, https://doi.org/10.1002/adma.202201114. doi: 10.1002/adma.202201114

    117. [117]

      J. Wang, J. Zhang, G. Liu, C. Ling, B. Chen, J. Huang, X. Liu, B. Li, A.L. Wang, Z. Hu, et al., Nano Res. 13 (2020) 1970, https://doi.org/10.1007/s12274-020-2849-y. doi: 10.1007/s12274-020-2849-y

    118. [118]

      J. Wang, G. Liu, Q. Yun, X. Zhou, X. Liu, Y. Chen, H. Cheng, Y. Ge, J. Huang, Z. Hu, et al., Acta Phys.-Chim. Sin. 39 (2023) 2305034, https://doi.org/10.3866/PKU.WHXB202305034.

    119. [119]

      J. Wang, A. Zhang, W. Niu, G. Liu, X. Zhou, L. Wang, X. Liu, L. Li, Z. Li, L. Zhai, et al., Adv. Funct. Mater. 35 (2025) 2405073, https://doi.org/10.1002/adfm.202405073. doi: 10.1002/adfm.202405073

    120. [120]

      P. F. Yin, M. Zhou, J. Chen, C. Tan, G. Liu, Q. Ma, Q. Yun, X. Zhang, H. Cheng, Q. Lu, et al., Adv. Mater. 32 (2020) 2000482, https://doi.org/10.1002/adma.202000482. doi: 10.1002/adma.202000482

    121. [121]

      M. Zhao, Z. D. Hood, M. Vara, K. D. Gilroy, M. Chi, Y. Xia, ACS Nano 13 (2019) 7241, https://doi.org/10.1021/acsnano.9b02890. doi: 10.1021/acsnano.9b02890

    122. [122]

      J. Liu, J. Huang, W. Niu, C. Tan, H. Zhang, Chem. Rev. 121 (2021) 5830, https://doi.org/10.1021/acs.chemrev.0c01047. doi: 10.1021/acs.chemrev.0c01047

    123. [123]

      Z. Shi, Y. Wu, X. Ruan, W. Zhai, Z. Li, L. Zhai, A. Zhang, H. Zhang, Natl. Sci. Rev. 11 (2024) nwae289, https://doi.org/10.1093/nsr/nwae289. doi: 10.1093/nsr/nwae289

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  67
  • HTML全文浏览量:  8
文章相关
  • 发布日期:  2026-03-15
  • 收稿日期:  2025-03-23
  • 接受日期:  2025-09-16
  • 修回日期:  2025-09-15
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章