Citation: Zhenhuan Wang, Weifei Wei, Ruijie Ma, Dou Luo, Zhanxiang Chen, Jun Zhang, Liyang Yu, Gang Li, Zhenghui Luo. 苯并[a]苯嗪受体的核心氰基化实现高效(19.04%)绿色溶剂加工的二元有机太阳能电池[J]. Acta Physico-Chimica Sinica, ;2026, 42(2): 100182. doi: 10.1016/j.actphy.2025.100182 shu

苯并[a]苯嗪受体的核心氰基化实现高效(19.04%)绿色溶剂加工的二元有机太阳能电池

  • Corresponding author: Zhenghui Luo, zhhuiluo@szu.edu.cn
  • Received Date: 9 July 2025
    Revised Date: 24 August 2025
    Accepted Date: 4 September 2025

  • 氰基化作为一种有效的分子工程策略,能够通过协同的电子效应和空间效应精确调控有机半导体的前线轨道能级与超分子组装行为。本研究设计并合成了一种新型氰基取代的小分子受体NA8,其基于苯并[a]苯嗪核心结构,利用氰基的高极性和线性构型来增强分子间作用并促进电荷分离。理论与实验结果表明,氰基取代在削弱分子内电荷转移作用(引起吸收蓝移)的同时,显著提升了分子间作用和堆积行为,使NA8表现出相对于中心核无氰基取代的对比分子NA1更高的结晶相干长度。受益于这一分子层面的优化,采用绿色溶剂邻二甲苯制备的PM6:NA8器件实现了19.04%的优异光电转换效率(对比PM6 : NA1的15.14%),其性能提升主要归因于更高的短路电流密度(27.35 mA cm−2)和填充因子(78.3%)。进一步的原子力显微镜(AFM)、掠入射广角X射线衍射(GIWAXS)和瞬态吸收光谱(TAS)表征证实,NA8基器件的优异性能源于更理想的相分离形貌、更高的载流子迁移率以及更快的激子解离过程。尽管开路电压略有降低(0.889 V vs. 0.914 V),这与氰基引入后C–C键振动增强所致的重组能升高相符。综上,核心氰基化为开发兼具高效率与非卤代溶剂加工兼容性的受体材料提供了一条有效途径,并为新一代有机光伏的分子设计提供了参考。
  • 加载中
    1. [1]

      J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H. Yip, T. Lau, X. Lu, C. Zhu, H. Peng, P. A. Johnson, et al., Joule 3 (2019) 1140, https://doi.org/10.1016/j.joule.2019.01.004.  doi: 10.1016/j.joule.2019.01.004

    2. [2]

      R. Ma, Z. Luo, Y. Zhang, L. Zhan, T. Jia, P. Cheng, C. Yan, Q. Fan, S. Liu, L. Ye, et al., Sci. China Mater. 68 (2025) 1689, https://doi.org/10.1007/s40843-025-3366-9.  doi: 10.1007/s40843-025-3366-9

    3. [3]

      Y. Li, Y. Xu, F. Yang, X. Jiang, X. Jiang, C. Li, S. You, W. Li, Chin. Chem. Lett. 30 (2019) 222, https://doi.org/10.1016/j.cclet.2018.09.014.  doi: 10.1016/j.cclet.2018.09.014

    4. [4]

      A. Classen, C. L. Chochos, L. Lüer, V. G. Gregoriou, J. Wortmann, A. Osvet, K. Forberich, I. McCulloch, T. Heumüller, C. J. Brabec, Nat. Energy 5 (2020) 711, https://doi.org/10.1038/s41560-020-00684-7.  doi: 10.1038/s41560-020-00684-7

    5. [5]

      L. Ye, H. Hu, M. Ghasemi, T. Wang, B. A. Collins, J.-H. Kim, K. Jiang, J. H. Carpenter, H. Li, Z. Li, et al., Nat. Mater. 17 (2018) 253, https://doi.org/10.1038/s41563-017-0005-1.  doi: 10.1038/s41563-017-0005-1

    6. [6]

      C. Li, J. Song, H. Lai, H. Zhang, R. Zhou, J. Xu, H. Huang, L. Liu, J. Gao, Y. Li, et al., Nat. Mater. 24 (2025) 433, https://doi.org/10.1038/s41563-024-02087-5.  doi: 10.1038/s41563-024-02087-5

    7. [7]

      J. Wang, P. Xue, Y. Jiang, Y. Huo, X. Zhan, Nat. Rev. Chem. 6 (2022) 614, https://doi.org/10.1038/s41570-022-00409-2.  doi: 10.1038/s41570-022-00409-2

    8. [8]

      C. Xie, C. Xiao, H. Niu, G. Feng, W. Li, Chin. Chem. Lett. 35 (2024) 109849, https://doi.org/10.1016/j.cclet.2024.109849.  doi: 10.1016/j.cclet.2024.109849

    9. [9]

      J. Hou, O. Inganas, R. H. Friend, F. Gao, Nat. Mater. 17 (2018) 119, https://doi.org/10.1038/NMAT5063.  doi: 10.1038/NMAT5063

    10. [10]

      W. Wei, C. Zhang, Zhan. Chen, W. Chen, G. Ran, G. Pan, W. Zhang, P. Buschbaum, Z. Bo, C. Yang, Z. Luo, Angew. Chem. Int. Ed. 63 (2024) e202315625, https://doi.org/10.1002/anie.202315625.  doi: 10.1002/anie.202315625

    11. [11]

      L. Zhu, M. Zhang, J. Xu, C. Li, J. Yan, G. Zhou, W. Zhong, T. Hao, J. Song, X. Xue, et al., Nat. Mater. 21 (2022) 656, https://doi.org/10.1038/s41563-022-01244-y.  doi: 10.1038/s41563-022-01244-y

    12. [12]

      K. Jiang, J. Zhang, C. Zhong, F. R. Lin, F. Qi, Q. Li, Z. Peng, W. Kaminsky, S.-H. Jang, J. Yu, et al., Nat. Energy 7 (2022) 1076, https://doi.org/10.1038/s41560-022-01138-y.  doi: 10.1038/s41560-022-01138-y

    13. [13]

      L. Wang, C. Chen, Y. Fu, C. Guo, D. Li, J. Cheng, W. Sun, Z. Gan, Y. Sun, B. Zhou, et al., Nat. Energy 9 (2024) 208, https://doi.org/10.1038/s41560-023-01436-z.  doi: 10.1038/s41560-023-01436-z

    14. [14]

      K. Chong, X. Xu, H. Meng, J. Xue, L. Yu, W. Ma, Q. Peng, Adv. Mater. 34 (2022) 2109516, https://doi.org/10.1002/adma.202109516.  doi: 10.1002/adma.202109516

    15. [15]

      J. Wang, Z. Zheng, P. Bi, Z. Chen, Y. Wang, X. Liu, S. Zhang, X. Hao, M. Zhang, Y. Li, J. Hou, Natl. Sci. Rev. 10 (2023) nwad085, https://doi.org/10.1093/nsr/nwad085.  doi: 10.1093/nsr/nwad085

    16. [16]

      C. Li, J. Zhou, J. Song, J. Xu, H. Zhang, X. Zhang, J. Guo, L. Zhu, D. Wei, G. Han, et al., Nat. Energy 6 (2022) 605, https://doi.org/10.1038/s41560-021-00820-x.  doi: 10.1038/s41560-021-00820-x

    17. [17]

      Y. Lin, J. Wang, Z. Zhang, H. Bai, Y. Li, D. Zhu, X. Zhan, Adv. Mater. 27 (2015) 1170, https://doi.org/10.1002/adma.201404317.  doi: 10.1002/adma.201404317

    18. [18]

      Q. Bei, B. Zhang, K. Wang, S. Zhang, G. Xing, C. Cabanetos, Chin. Chem. Lett. 35 (2024) 108438, https://doi.org/10.1016/j.ccle.2023.108438.  doi: 10.1016/j.ccle.2023.108438

    19. [19]

      H. Tian, K. Sun, D. Luo, Y. Wang, Z. Chen, L. Yu, G. Zhang, C. Yang, Z. Luo, Sci. China Chem. 2025, 68, https://doi.org/10.1007/s11426-025-2671-6.  doi: 10.1007/s11426-025-2671-6

    20. [20]

      P. Zhang, Z. Zhang, H. Sun, J. Li, Y. Chen, J. Wang, C. Zhan, Chin. Chem. Lett. 35 (2024) 108802, https://doi.org/10.1016/j.cclet.2023.108802.  doi: 10.1016/j.cclet.2023.108802

    21. [21]

      Y. Wang, X. Jiang, H. Song, N. Wei, Y. Wang, X. Xu, C. Li, H. Lu, Y. Liu, Z. Bo, Acta Phys. Chim. Sin. 41 (2025) 100027, https://doi.org/10.3866/pku.Whxb202406007.  doi: 10.3866/pku.Whxb202406007

    22. [22]

      Z. Zheng, J. Wang, P. Bi, J. Ren, Y. Wang, Y. Yang, X. Liu, S. Zhang, J. Hou, Joule 6 (2022) 171, https://doi.org/10.1016/j.joule.2021.12.017.  doi: 10.1016/j.joule.2021.12.017

    23. [23]

      W. Zou, Y. Sun, L. Sun, X. Wang, C. Gao, D. Jiang, J. Yu, G. Zhang, H. Yin, R. Yang, et al., Adv. Mater. 37 (2025) 2413125, https://doi.org/10.1002/adma.202413125.  doi: 10.1002/adma.202413125

    24. [24]

      Y. Xu, Y. Liao, W. Wang, Y. Wang, J. Wang, Z. Suo, F. Li, R. Wang, W. Ni, B. Kan, et al., Adv. Mater. 37 (2025) 2501653, https://doi.org/10.1002/adma.202501653.  doi: 10.1002/adma.202501653

    25. [25]

      S. Wang, S. Wang, J. Wang, N. Yu, J. Qiao, X. Xie, C. Li, M. S. Abbasi, R. Ding, X. Zhang, et al., Adv. Energy Mater. 37 (2025) 2405205, https://doi.org/10.1002/aenm.202405205.  doi: 10.1002/aenm.202405205

    26. [26]

      S. Guan, Y. Li, C. Xu, N. Yin, C. Xu, C. Wang, M. Wang, Y. Xu, Q. Chen, D. Wang, L. Zuo, H. Chen, Adv. Mater. 36 (2024) 2400342, https://doi.org/10.1002/adma.202400342.  doi: 10.1002/adma.202400342

    27. [27]

      B. Fan, H. Gao, L. Yu, R. Li, L. Wang, W. Zhong, Y. Wang, W. Jiang, H. Fu, T. Chen, et al., Angew. Chem. Int. Ed. 64 (2025) e202418439, https://doi.org/10.1002/anie.202418439.  doi: 10.1002/anie.202418439

    28. [28]

      J. Guo, S. Qin, J. Zhang, C. Zhu, X. Xia, Y. Gong, T. Liang, Y. Zeng, G. Han, H. Zhuo, et al., Nat. Commun. 16 (2025) 1503, https://doi.org/10.1038/s41467-025-56799-6.  doi: 10.1038/s41467-025-56799-6

    29. [29]

      Z. Luo, W. Wei, R. Ma, G. Ran, M. H. Jee, Z. Chen, Y. Li, W. Zhang, H. Y. Woo, C. Yang, Adv. Mater. 36 (2024) 2407517, https://doi.org/10.1002/adma.202407517.  doi: 10.1002/adma.202407517

    30. [30]

      S. Guan, Y. Li, Z. Bi, Y. Lin, Y. Fu, K. Wang, M. Wang, W. Ma, J. Xia, Z. Ma, et al., Energy Environ. Sci. 18 (2025) 313, https://doi.org/10.1039/d4ee03778b.  doi: 10.1039/d4ee03778b

    31. [31]

      L. Zeng, R. Hu, M. Zhang, S. Lee, Q. Wang, S. Meng, Q. Chen, J. Liu, L. Xue, L. Mi, et al., Energy Environ. Sci. 18 (2025) 6754, https://doi.org/10.1039/d5ee01686j.  doi: 10.1039/d5ee01686j

    32. [32]

      C. Li, G. Yao, X. Gu, J. Lv, Y. Hou, Q. Lin, N. Yu, M. S. Abbasi, X. Zhang, J. Zhang, et al., Nat. Commun. 15 (2024) 8872, https://doi.org/10.1038/s41467-024-53286-2.  doi: 10.1038/s41467-024-53286-2

    33. [33]

      Y. Jiang, S. Sun, R. Xu, F. Liu, X. Miao, G. Ran, K. Liu, Y. Yi, W. Zhang, X. Zhu, Nat. Energy 9 (2024) 975, https://doi.org/10.1038/s41560-024-01557-z.  doi: 10.1038/s41560-024-01557-z

    34. [34]

      X. Song, B. Zhang, X. Liu, L. Mei, H. Li, S. Yin, X. Zhou, H. Chen, Y. Lin, W. Zhu, X.-K. Chen, Adv. Mater. 37 (2025) 2418393, https://doi.org/10.1002/adma.202418393.  doi: 10.1002/adma.202418393

    35. [35]

      N. Wei, H. Lu, Y. Wei, Y. Guo, H. Song, J. Chen, Z. Yang, Y. Cheng, Z. Bian, W. Zhang, et al., Energy Environ. Sci. 18 (2025) 2298, https://doi.org/10.1039/d4ee05375c.  doi: 10.1039/d4ee05375c

    36. [36]

      M. Zhang, L. Zhu, J. Yan, X. Xue, Z. Wang, F. Eisner, G. Zhou, R. Zeng, L. Kan, L. Wu, et al., Joule 9 (2025) 101851, https://doi.org/10.1016/j.joule.2025.101851.  doi: 10.1016/j.joule.2025.101851

    37. [37]

      J. Wang, P. Wang, T. Chen, W. Zhao, J. Wang, B. Lan, W. Feng, H. Liu, Y. Liu, X. Wan, et al., Angew. Chem. Int. Ed. 64 (2025) e202423562, https://doi.org/10.1002/anie.202423562.  doi: 10.1002/anie.202423562

    38. [38]

      H. Chen, Y. Huang, R. Zhang, H. Mou, J. Ding, J. Zhou, Z. Wang, H. Li, W. Chen, J. Zhu, et al., Nat. Mater. 24 (2025) 444, https://doi.org/10.1038/s41563-024-02062-0.  doi: 10.1038/s41563-024-02062-0

    39. [39]

      Z. Chen, J. Ge, W. Song, X. Tong, H. Liu, X. Yu, J. Li, J. Shi, L. Xie, C. Han, Q. Liu, Z. Ge, Adv. Mater. 36 (2024) e2406690, https://doi.org/10.1002/adma.202406690.  doi: 10.1002/adma.202406690

    40. [40]

      B. Cheng, W. Hou, C. Han, S. Cheng, X. Xia, X. Guo, Y. Li, M. Zhang, Energy Environ. Sci. 18 (2025) 1375, https://doi.org/10.1039/d4ee04623d.  doi: 10.1039/d4ee04623d

    41. [41]

      Y. Jiang, K. Liu, F. Liu, G. Ran, M. Wang, T. Zhang, R. Xu, H. Liu, W. Zhang, Z. Wei, et al., Adv. Mater. 37 (2025) 2500282, https://doi.org/10.1002/adma.202500282.  doi: 10.1002/adma.202500282

    42. [42]

      R. Ma, B. Zou, Y. Hai, Y. Luo, Z. Luo, J. Wu, H. Yan, G. Li, Adv. Mater. 37 (2025) 2500861, https://doi.org/10.1002/adma.202500861.  doi: 10.1002/adma.202500861

    43. [43]

      C. Wang, Q. Chen, C. Zhang, B. Han, X. Liu, S. Liang, B. Wang, C. Xiao, B. Gao, Z. Tang, et al., CCS Chem. 7 (2025) 1177, https://doi.org/10.31635/ccschem.024.202404023.  doi: 10.31635/ccschem.024.202404023

    44. [44]

      R. Li, S. Liang, Y. Xu, C. Zhang, Z. Tang, B. Liu, W. Li, Acta Phys.-Chim. Sin. 40 (2024) 2307037, https://doi.org/10.3866/PKU.WHXB202307037.  doi: 10.3866/PKU.WHXB202307037

    45. [45]

      Y. Cho, Z. Sun, K. M. Lee, G. Zeng, S. Jeong, S. Yang, J. E. Lee, B. Lee, S.-H. Kang, Y. Li, et al., ACS Energy Lett. 8 (2023) 96, https://doi.org/10.1021/acsenergylett.2c02140.  doi: 10.1021/acsenergylett.2c02140

    46. [46]

      L. Chen, C. Zhao, H. Yu, A. Sergeev, L. Zhu, K. Ding, Y. Fu, H. M. Ng, C. H. Kwok, X. Zou, et al., Adv. Energy Mater. 14 (2024) 2400285, https://doi.org/10.1002/aenm.202400285.  doi: 10.1002/aenm.202400285

    47. [47]

      X. Ran, C. Zhang, D. Qiu, A. Tang, J. Li, T. Wang, J. Zhang, Z. Wei, K. Lu, Adv. Mater. 37 (2025) 2504805, https://doi.org/10.1002/adma.202504805.  doi: 10.1002/adma.202504805

    48. [48]

      K. Feng, H. Guo, J. Wang, Y. Shi, Z. Wu, M. Su, X. Zhang, J. H. Son, H. Y. Woo, X. Guo, J. Am. Chem. Soc. 143 (2021) 1539, https://doi.org/10.1021/jacs.0c11608.

    49. [49]

      Y. Li, H. Fu, Z. Wu, X. Wu, M. Wang, H. Qin, F. Lin, H. Y. Woo, A. K. Jen, ChemSusChem 14 (2021) 3579, https://doi.org/10.1002/cssc.202100746.  doi: 10.1002/cssc.202100746

    50. [50]

      Y. Wang, K. Sun, C. Li, C. Zhao, C. Gao, L. Zhu, Q. Bai, C. Xie, P. You, J. Lv, et al., Adv. Mater. 36 (2024) 2411957, https://doi.org/10.1002/adma.20241195  doi: 10.1002/adma.20241195

    51. [51]

      D. Luo, L. Zhang, J. Zeng, H. Zhang, L. Li, T. Dai, B. Xu, E. Zhou, A. K. K. Kyaw, Y. Chen, W. Y. Wong, Adva. Mater. 36 (2024) 2410880, https://doi.org/10.1002/adma.202410880.  doi: 10.1002/adma.202410880

  • 加载中
    1. [1]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 100027-0. doi: 10.3866/PKU.WHXB202406007

    2. [2]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    3. [3]

      Ruonan LiShijie LiangYunhua XuCuifen ZhangZheng TangBaiqiao LiuWeiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037

    4. [4]

      Shuixing Dai Jilei Jiang Yuxiao Wang Jinqi Hu Minghua Huang . Application of Knoevenagel Reaction in Organic Chemistry Teaching. University Chemistry, 2025, 40(5): 334-341. doi: 10.12461/PKU.DXHX202405208

    5. [5]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    6. [6]

      Binbin LiuYang ChenTianci JiaChen ChenZhanghao WuYuhui LiuYuhang ZhaiTianshu MaChanglei Wang . Hydroxyl-functionalized molecular engineering mitigates 2D phase barriers for efficient wide-bandgap and all-perovskite tandem solar cells. Acta Physico-Chimica Sinica, 2026, 42(1): 100128-0. doi: 10.1016/j.actphy.2025.100128

    7. [7]

      Shuang Meng Haixin Long Zhou Zhou Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008

    8. [8]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    9. [9]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    10. [10]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    11. [11]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    12. [12]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    13. [13]

      Jiashuang Lu Xiaoyang Xu Youqing He Mingyue Wu Ruixin Shi Wenfang Yu Hang Lu Ji Liu Qingzeng Zhu . 生命健康中的有机硅高分子. University Chemistry, 2025, 40(8): 169-180. doi: 10.12461/PKU.DXHX202409143

    14. [14]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    15. [15]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    16. [16]

      Zheqi Wang Yawen Lin Shunliu Deng Huijun Zhang Jinmei Zhou . Antiviral Strategies: A Brief Review of the Development History of Small Molecule Antiviral Drugs. University Chemistry, 2024, 39(9): 85-93. doi: 10.12461/PKU.DXHX202403108

    17. [17]

      Chuan′an DINGWeibo YANShaoying WANGHao XIN . Preparation of wide-band gap copper indium gallium sulfide solar cells by solution method. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1755-1764. doi: 10.11862/CJIC.20250198

    18. [18]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    19. [19]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    20. [20]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

Metrics
  • PDF Downloads(0)
  • Abstract views(242)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return