双层锰酸盐正极LaSr2Mn2O6.96在全固态氟离子电池中的结构与电化学行为

VanitaVanita SchochRoland PuphalPascal YilmazHasan BauerMatthias ClemensOliver

引用本文: VanitaVanita, SchochRoland, PuphalPascal, YilmazHasan, BauerMatthias, ClemensOliver. 双层锰酸盐正极LaSr2Mn2O6.96在全固态氟离子电池中的结构与电化学行为[J]. 物理化学学报, 2026, 42(3): 100181. doi: 10.1016/j.actphy.2025.100181 shu
Citation:  Vanita Vanita, Roland Schoch, Pascal Puphal, Hasan Yilmaz, Matthias Bauer, Oliver Clemens. Structural and electrochemical behaviour of bilayer manganite LaSr2Mn2O6.96 cathode for all-solid-state fluoride ion batteries[J]. Acta Physico-Chimica Sinica, 2026, 42(3): 100181. doi: 10.1016/j.actphy.2025.100181 shu

双层锰酸盐正极LaSr2Mn2O6.96在全固态氟离子电池中的结构与电化学行为

    通讯作者: Email: oliver.clemens@imw.uni-stuttgart.de (Oliver Clemens)
摘要: 本研究探讨了Ruddlesden-Popper型双层锰酸盐LaSr2Mn2O6.96作为全固态氟离子电池(FIBs)插层型正极材料的潜力。通过非原位X射线衍射分析了LaSr2Mn2O6.96在氟离子嵌入/脱嵌过程中的结构变化,发现F的嵌入会形成三种不同的四方相。为理解这些物相的复杂行为,采用X射线吸收光谱和磁学测量手段研究了Mn氧化态及配位环境的变化。在20 kN的堆叠压力和1 V至−1 V电位区间的电化学循环中,LaSr2Mn2O6.96的比容量从初始的~30 mAh g−1持续增加至200次循环后的~68 mAh g−1,库仑效率达~99%,且未出现容量衰减迹象。这表明双层锰酸盐LaSr2Mn2O6.96有望成为循环稳定的全固态FIBs正极材料,尤其是在施加堆叠压力的条件下。

English

    1. [1]

      D. Ahmed, K. M. Maraz, Mater. Eng. Res. 5 (2023) 265, https://doi.org/10.25082/MER.2023.01.003 doi: 10.25082/MER.2023.01.003

    2. [2]

      I. Hadjipaschalis, A. Poullikkas, V. Efthimiou, Renew. Sustain. Energy Rev. 13 (2009) 1513, https://doi.org/10.1016/j.rser.2008.09.028 doi: 10.1016/j.rser.2008.09.028

    3. [3]

      M. Li, J. Lu, Z. Chen, K. Amine, Adv. Mater. 30 (2018) 1800561, https://doi.org/10.1002/adma.201800561 doi: 10.1002/adma.201800561

    4. [4]

      M. J. Lain, E. Kendrick, J. Power Sources 493 (2021) 229690, https://doi.org/10.1016/j.jpowsour.2021.229690 doi: 10.1016/j.jpowsour.2021.229690

    5. [5]

      C. Arbizzani, G. Gabrielli, M. Mastragostino, J. Power Sources 196 (2011) 4801, https://doi.org/10.1016/j.jpowsour.2011.01.068 doi: 10.1016/j.jpowsour.2011.01.068

    6. [6]

      S. Hess, M. Wohlfahrt-Mehrens, M. Wachtler, J. Electrochem. Soc. 162 (2015) A3084, https://doi.org/10.1149/2.0121502jes doi: 10.1149/2.0121502jes

    7. [7]

      H. Lee, N. Sitapure, S. Hwang, J. S.-I. Kwon, Comput. Chem. Eng. 153 (2021) 107415, https://doi.org/10.1016/j.compchemeng.2021.107415 doi: 10.1016/j.compchemeng.2021.107415

    8. [8]

      X. Gao, Y.-N. Zhou, D. Han, J. Zhou, D. Zhou, W. Tang, J. B. Goodenough, Joule 4 (2020) 1864, https://doi.org/10.1016/j.joule.2020.06.016 doi: 10.1016/j.joule.2020.06.016

    9. [9]

      H. Vikström, S. Davidsson, M. Höök, Appl. Energy 110 (2013) 252, https://doi.org/10.1016/j.apenergy.2013.04.005 doi: 10.1016/j.apenergy.2013.04.005

    10. [10]

      S. E. Kesler, P. W. Gruber, P. A. Medina, G. A. Keoleian, M. P. Everson, T. J. Wallington, Ore Geol. Rev. 48 (2012) 55, https://doi.org/10.1016/j.oregeorev.2012.05.006 doi: 10.1016/j.oregeorev.2012.05.006

    11. [11]

      G. M. Mudd, S. M. Jowitt, Econ. Geol. 109 (2014) 1813, https://doi.org/10.2113/econgeo.109.7.1813 doi: 10.2113/econgeo.109.7.1813

    12. [12]

      X. Fu, D. N. Beatty, G. G. Gaustad, G. Ceder, R. Roth, R. E. Kirchain, M. Bustamante, C. Babbitt, E. A. Olivetti, Environ. Sci. Technol. 54 (2020) 2985, https://doi.org/10.1021/acs.est.9b04975 doi: 10.1021/acs.est.9b04975

    13. [13]

      F. Gschwind, G. Rodriguez-Garcia, D. Sandbeck, A. Gross, M. Weil, M. Fichtner, N. Hörmann, J. Fluorine Chem. 182 (2016) 76, https://doi.org/10.1016/j.jfluchem.2015.12.002 doi: 10.1016/j.jfluchem.2015.12.002

    14. [14]

      M. Zhang, X. Cao, Y. Hao, H. Wang, J. Pu, B. Chi, Z. Shen, Energy Rev. 3 (2024) 100083, https://doi.org/10.1016/j.enrev.2024.100083 doi: 10.1016/j.enrev.2024.100083

    15. [15]

      M. A. Nowroozi, I. Mohammad, P. Molaiyan, K. Wissel, A. R. Munnangi, O. Clemens, J. Mater. Chem. A 9 (2021) 5980, https://doi.org/10.1039/d0ta11656d doi: 10.1039/d0ta11656d

    16. [16]

      A. W. Xiao, G. Galatolo, M. Pasta, Joule 5 (2021) 2823, https://doi.org/10.1016/j.joule.2021.09.016 doi: 10.1016/j.joule.2021.09.016

    17. [17]

      H. Nakano, T. Matsunaga, T. Mori, K. Nakanishi, Y. Morita, K. Ide, K.-i. Okazaki, Y. Orikasa, T. Minato, K. Yamamoto, Chem. Mater. 33 (2020) 459, https://doi.org/10.1021/acs.chemmater.0c04570 doi: 10.1021/acs.chemmater.0c04570

    18. [18]

      I. Mohammad, R. Witter, M. Fichtner, M. Anji Reddy, ACS Appl. Energy Mater. 1 (2018) 4766, https://doi.org/10.1021/acsaem.8b00864 doi: 10.1021/acsaem.8b00864

    19. [19]

      Y. Yu, M. Lei, D. Li, C. Li, Adv. Energy Mater. 13 (2023) 2203168, https://doi.org/10.1002/aenm.202203168 doi: 10.1002/aenm.202203168

    20. [20]

      Y. Yu, G. Li, C. Li, Adv. Funct. Mater. 35 (2025) 2410891, https://doi.org/10.1002/adfm.202410891 doi: 10.1002/adfm.202410891

    21. [21]

      G. Li, D. Li, M. Lei, C. Li, Adv. Energy Mater. 15 (2025) 2404282, https://doi.org/10.1002/aenm.202404282 doi: 10.1002/aenm.202404282

    22. [22]

      G. Li, Y. Yu, D. Li, C. Li, Adv. Funct. Mater. 34 (2024) 2406421, https://doi.org/10.1002/adfm.202406421 doi: 10.1002/adfm.202406421

    23. [23]

      D. T. Thieu, M. Hammad, H. Bhatia, T. Diemant, V. S. K. Chakravadhanula, R. J. Behm, C. Kubel, M. Fichtner, Adv. Funct. Mater. 27 (2017) 1701051, https://doi.org/10.1002/adfm.201701051 doi: 10.1002/adfm.201701051

    24. [24]

      I. Mohammad, R. Witter, Mater. Lett. 244 (2019) 159, https://doi.org/10.1016/j.matlet.2019.02.052 doi: 10.1016/j.matlet.2019.02.052

    25. [25]

      M. A. Nowroozi, I. Mohammad, P. Molaiyan, K. Wissel, A. R. Munnangi, O. Clemens, J. Mater. Chem. A 9 (2021) 5980, https://doi.org/10.1039/d0ta11656d doi: 10.1039/d0ta11656d

    26. [26]

      M. A. Nowroozi, K. Wissel, M. Donzelli, N. Hosseinpourkahvaz, S. Plana-Ruiz, U. Kolb, R. Schoch, M. Bauer, A. M. Malik, J. Rohrer, S. Ivlev, F. Kraus, O. Clemens, Commun. Mater. 1 (2020) 27, https://doi.org/10.1038/s43246-020-0030-5 doi: 10.1038/s43246-020-0030-5

    27. [27]

      K. Wissel, A. M. Malik, S. Vasala, S. Plana-Ruiz, U. Kolb, P. R. Slater, I. da Silva, L. Alff, J. Rohrer, O. Clemens, Chem. Mater. 32 (2020) 3160, https://doi.org/10.1021/acs.chemmater.0c00193 doi: 10.1021/acs.chemmater.0c00193

    28. [28]

      K. Wissel, R. Schoch, T. Vogel, M. Donzelli, G. Matveeva, U. Kolb, M. Bauer, P. R. Slater, O. Clemens, Chem. Mater. 33 (2021) 499, https://doi.org/10.1021/acs.chemmater.0c01762 doi: 10.1021/acs.chemmater.0c01762

    29. [29]

      M. A. Nowroozi, S. Ivlev, J. Rohrer, O. Clemens, J. Mater. Chem. A 6 (2018) 4658, https://doi.org/10.1039/c7ta09427b doi: 10.1039/c7ta09427b

    30. [30]

      M. A. Nowroozi, K. Wissel, J. Rohrer, A. R. Munnangi, O. Clemens, Chem. Mater. 29 (2017) 3441, https://doi.org/10.1021/acs.chemmater.6b05075 doi: 10.1021/acs.chemmater.6b05075

    31. [31]

      Y. Wang, K. Yamamoto, Y. Tsujimoto, T. Matsunaga, D. Zhang, Z. Cao, K. Nakanishi, T. Uchiyama, T. Watanabe, T. Takami, H. Miki, H. Iba, K. Maeda, H. Kageyama, Y. Uchimoto, Chem. Mater. 34 (2022) 609, https://doi.org/10.1021/acs.chemmater.1c03189 doi: 10.1021/acs.chemmater.1c03189

    32. [32]

      V. Vanita, G. Mezzadra., C. Tealdi, O. Clemens, ACS Appl. Energy Mater. 8 (2025) 7562, https://doi.org/10.1021/acsaem.5c00875 doi: 10.1021/acsaem.5c00875

    33. [33]

      S. Vasala, A. Jakob, K. Wissel, A. I. Waidha, L. Alff, O. Clemens, Adv. Electron Mater. 6 (2020) 1900974, https://doi.org/10.1002/aelm.201900974 doi: 10.1002/aelm.201900974

    34. [34]

      H. Miki, K. Yamamoto, C. Shuo, T. Matsunaga, M. Kumar, N. Thakur, Y. Sakaguchi, T. Watanabe, H. Iba, H. Kageyama, Y. Uchimoto, Solid State Ionics 406 (2024) 116480, https://doi.org/10.1016/j.ssi.2024.116480 doi: 10.1016/j.ssi.2024.116480

    35. [35]

      H. Miki, K. Yamamoto, H. Nakaki, T. Yoshinari, K. Nakanishi, S. Nakanishi, H. Iba, J. Miyawaki, Y. Harada, A. Kuwabara, Y. Wang, T. Watanabe, T. Matsunaga, K. Maeda, H. Kageyama, Y. Uchimoto, J. Am. Chem. Soc. 146 (2024) 3844, https://doi.org/10.1021/jacs.3c10871 doi: 10.1021/jacs.3c10871

    36. [36]

      G. Galatolo, O. Alshangiti, C. Di Mino, G. Matthews, A. W. Xiao, G. J. Rees, M. Schart, Y. A. Chart, L. F. Olbrich, M. Pasta, ACS Energy Lett. 9 (2023) 85, https://doi.org/10.1021/acsenergylett.3c02228 doi: 10.1021/acsenergylett.3c02228

    37. [37]

      H. Chen, T. Aalto, V. Vanita, O. Clemens, Small Struct. 5 (2024) 2300570, https://doi.org/10.1002/sstr.202300570 doi: 10.1002/sstr.202300570

    38. [38]

      M. H. Ehsani, M. E. Ghazi, P. Kameli, F. S. Razavi, J. Alloy Compd. 586 (2014) 261, https://doi.org/10.1016/j.jallcom.2013.10.002 doi: 10.1016/j.jallcom.2013.10.002

    39. [39]

      V. Vanita, A. I. Waidha, S. Vasala, P. Puphal, R. Schoch, P. Glatzel, M. Bauer, O. Clemens, J. Mater. Chem. A 12 (2024) 8769, https://doi.org/10.1039/d4ta00704b doi: 10.1039/d4ta00704b

    40. [40]

      L. Aikens, L. Gillie, R. Li, C. Greaves, J. Mater. Chem. A 12 (2002) 264, https://doi.org/10.1039/B105550J doi: 10.1039/B105550J

    41. [41]

      C. Greaves, J. L. Kissick, M. G. Francesconi, L. D. Aikens, L. J. Gillie, J. Mater. Chem. A 9 (1999) 111, https://doi.org/10.1039/A804447C doi: 10.1039/A804447C

    42. [42]

      R. S. Liu, L. Y. Jang, J. M. Chen, J. B. Wu, R. G. Liu, J. G. Lin, C. Y. Huang, Solid State Commun. 105 (1998) 605, https://doi.org/10.1016/S0038-1098(98)80003-3 doi: 10.1016/S0038-1098(98)80003-3

    43. [43]

      M. Abu-Samak, U. Kumar, A. M. Quraishi, R. Kumar, S. Kumar, S. Dalela, M. A. Ahmad, B. L. Choudhary, P. A. Alvi, Phys. B 628 (2022) 413562, https://doi.org/41356210.1016/j.physb.2021.413562 doi: 10.1016/j.physb.2021.413562

    44. [44]

      T. Yamamoto, Int. Tables Crystallogr. 1 (2024) 80, https://doi.org/10.1107/S157487072000751X doi: 10.1107/S157487072000751X

    45. [45]

      M. Kubota, H. Yoshizawa, H. Fujioka, K. Hirota, K. Ohoyama, Y. Endoh, Y. Moritomo, J. Phys. Soc. Jpn. 69 (2000) 1606, https://doi.org/10.1143/JPSJ.69.1606 doi: 10.1143/JPSJ.69.1606

    46. [46]

      I. B. Sharma, D. Singh, Proc. Indian Acad. Sci. Chem. Sci. 107 (1995) 189, https://doi.org/10.1007/BF02884435 doi: 10.1007/BF02884435

    47. [47]

      A. S. Erchidi Elyacoubi, R. Masrour, A. Jabar, E. K. Hlil, J. Low Temp. Phys. 203 (2021) 419, https://doi.org/10.1007/s10909-021-02592-w doi: 10.1007/s10909-021-02592-w

    48. [48]

      Tommi Hendrik Aalto, T. Widder, Eberhard Goering, Peter Nagel, Kerstin Wissel, Oliver Clemens Preprint, https://doi.org/10.26434/chemrxiv-2025-qlbkp

    49. [49]

      T. H. Aalto, R. Talei, K. Küster, G. Schmitz, O. Clemens, Batteries Supercaps (2025) 2500195, https://doi.org/10.1002/batt.202500195 doi: 10.1002/batt.202500195

    50. [50]

      H. Chen, R. Schoch, J. N. Chotard, Y. M. Thiebes, K. Wissel, R. Niewa, M. Bauer, O. Clemens, Small Methods (2025) e2500374, https://doi.org/10.1002/smtd.202500374 doi: 10.1002/smtd.202500374

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  74
  • HTML全文浏览量:  11
文章相关
  • 发布日期:  2026-03-15
  • 收稿日期:  2025-06-30
  • 接受日期:  2025-09-04
  • 修回日期:  2025-08-27
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章