Citation: Yanping Qiu, Jiatong Zhang, Linping Li, Yangqin Gao, Ning Li, Lei Ge. MOF-derived g-C3N4/ZnIn2S4 S-scheme heterojunction: interface-engineering enhanced photocatalytic NO conversion[J]. Acta Physico-Chimica Sinica, 2026, 42(4): 100175. doi: 10.1016/j.actphy.2025.100175
MOF衍生的g-C3N4/ZnIn2S4 S型异质结:界面工程增强光催化NO转化
-
关键词:
- 光催化
- / NO转化
- / g-C3N4/ZnIn2S4异质结
- / 界面工程
- / S型异质结
English
MOF-derived g-C3N4/ZnIn2S4 S-scheme heterojunction: interface-engineering enhanced photocatalytic NO conversion
-
Key words:
- Photocatalysis
- / NO conversion
- / g-C3N4/ZnIn2S4 heterojunction
- / Interface engineering
- / S-scheme
-
-
[1]
J. Zhao, K. Feng, S.-H. Liu, C.-W. Lin, S. Zhang, S. Li, W. Li, J. Chen, Chemosphere 249 (2020) 126095, https://doi.org/10.1016/j.chemosphere.2020.126095. doi: 10.1016/j.chemosphere.2020.126095
-
[2]
J. Luan, J. Liu, X. Huang, Z. Tan, H. Yu, Mol. Catal. 554 (2024) 113856, https://doi.org/10.1016/j.mcat.2024.113856. doi: 10.1016/j.mcat.2024.113856
-
[3]
Y. He, H. Li, J. Wu, Z. Liu, Y. Chen, W. Guo, Y. Wu, M. Fu, X. Liu, Appl. Surf. Sci. 604 (2022) 154641, https://doi.org/10.1016/j.apsusc.2022.154641. doi: 10.1016/j.apsusc.2022.154641
-
[4]
X. Xia, C. Xie, B. Xu, X. Ji, G. Gao, P. Yang, J. Ind. Eng. Chem. 105 (2022) 303, https://doi.org/10.1016/j.jiec.2021.09.033. doi: 10.1016/j.jiec.2021.09.033
-
[5]
Y. Zhang, Z. Hu, H. Zhang, H. Li, S. Yang, Adv. Funct. Mater. 33 (2023) 2303851, https://doi.org/10.1002/adfm.202303851. doi: 10.1002/adfm.202303851
-
[6]
F. Chang, C. Yang, J. Wang, B. Lei, S. Li, H. Kim, Sep. Purif. Technol. 266 (2021) 118237, https://doi.org/10.1016/j.seppur.2020.118237. doi: 10.1016/j.seppur.2020.118237
-
[7]
Z. Gu, M. Jin, X. Wang, R. Zhi, Z. Hou, J. Yang, H. Hao, S. Zhang, X. Wang, E. Zhou, S. Yin, Catalysts 13 (2023) 192, https://doi.org/10.3390/catal13010192. doi: 10.3390/catal13010192
-
[8]
B. Chen, X. Sun, Y. Hong, Y. Tian, E. Liu, J. Shi, X. Lin, F. Xia, Renew. Energy 237 (2024) 121747, https://doi.org/10.1016/j.renene.2024.121747. doi: 10.1016/j.renene.2024.121747
-
[9]
C. Li, X. Zhang, T. Song, Y. Tian, S. Wang, P. Yang, J. Environ. Chem. Eng. 12 (2024) 113396, https://doi.org/10.1016/j.jece.2024.113396. doi: 10.1016/j.jece.2024.113396
-
[10]
H. Bae, K. C. Bhamu, P. Mane, V. Burungale, N. Kumar, S. H. Lee, S. W. Ryu, S. G. Kang, J. S. Ha, Mater. Today Energy 40 (2024) 101484, https://doi.org/10.1016/j.mtener.2023.101484. doi: 10.1016/j.mtener.2023.101484
-
[11]
M. Bigdeli Tabar, H. Azimi, R. Yousefi, Appl. Surf. Sci. 622 (2023) 156912, https://doi.org/10.1016/j.apsusc.2023.156912. doi: 10.1016/j.apsusc.2023.156912
-
[12]
Z. Liu, Y. Bian, G. Dawson, J. Zhu, K. Dai, Chin. Chem. Lett. 36 (2025) 111272, https://doi.org/10.1016/j.cclet.2025.111272. doi: 10.1016/j.cclet.2025.111272
-
[13]
R. Sun, X. Wang, Y. Gao, Y. Yao, L. Xin, D. Wang, Y. Wang, Int. J. Hydrog. Energy 55 (2024) 635, https://doi.org/10.1016/j.ijhydene.2023.11.251. doi: 10.1016/j.ijhydene.2023.11.251
-
[14]
M. Gu, J. Zhang, I. V. Kurganskii, A. S. Poryvaev, M. V. Fedin, B Cheng, J. Yu, L. Zhang, Adv. Mater. 37 (2025) 2414803, https://doi.org/10.1002/adma.202414803.
-
[15]
L. Zhang, J. Zhang, J. Yu, H. García, Nat. Rev. Chem. 9 (2025) 328, https://doi.org/10.1038/s41570-025-00698-3. doi: 10.1038/s41570-025-00698-3
-
[16]
P. Li, Y. Cui, Z. Wang, G. Dawson, C. Shao, K. Dai, Acta Phys. Chim. Sin. 41 (2025) 100065, https://doi.org/10.1016/j.actphy.2025.100065. doi: 10.1016/j.actphy.2025.100065
-
[17]
L. Li, X. Dai, K. Gao, H. Yu, F. Chen, W. Wang, J. Ning, Y. Hu, Chem. Eng. J. 514 (2025) 163193, https://doi.org/10.1016/j.cej.2025.163193. doi: 10.1016/j.cej.2025.163193
-
[18]
T. Wang, X. Pan, M. He, L. Kang, W. Ma, Adv. Sci. 11 (2024) 2403771, https://doi.org/10.1002/advs.202403771. doi: 10.1002/advs.202403771
-
[19]
Y. Cai, F. Luo, Y. Guo, F. Guo, W. Shi, S. Yang, Molecules 28 (2023) 2142, https://doi.org/10.3390/molecules28052142. doi: 10.3390/molecules28052142
-
[20]
X. Deng, D. Wang, H. Li, W. Jiang, T. Zhou, Y. Wen, B. Yu, G. Che, L. Wang, J. Alloys Compd. 894 (2022) 162209, https://doi.org/10.1016/j.jallcom.2021.162209. doi: 10.1016/j.jallcom.2021.162209
-
[21]
F. Wang, S. Chen, J. Wu, W. Xiang, L. Duan, Ind. Eng. Chem. Res. 62 (2023) 15907, https://doi.org/10.1021/acs.iecr.3c02523. doi: 10.1021/acs.iecr.3c02523
-
[22]
B. Liu, K. Meng, B. Cheng, L. Wang, G. Liang, C. Bie, J. Mater. Sci. Technol. 231 (2025) 286, https://doi.org/10.1016/j.jmst.2025.02.013. doi: 10.1016/j.jmst.2025.02.013
-
[23]
Y. Liu, C. Chen, G. Dawson, J. Zhang, C. Shao, K. Dai, J. Mater. Sci. Technol. 233 (2025) 10, https://doi.org/10.1016/j.jmst.2024.12.094. doi: 10.1016/j.jmst.2024.12.094
-
[24]
M. Xu, X. Zhao, H. Jiang, S. Chen, P. Huo, J. Environ. Chem. Eng. 9 (2021) 106469, https://doi.org/10.1016/j.jece.2021.106469. doi: 10.1016/j.jece.2021.106469
-
[25]
S. Zang, X. Cai, Y. Zang, F. Jing, Y. Lu, S. Tang, F. Lin, L. Mo, Inorg. Chem. 63 (2024) 6546, https://doi.org/10.1021/acs.inorgchem.4c00645. doi: 10.1021/acs.inorgchem.4c00645
-
[26]
K. Qi, J. Jing, G. Dong, P. Li, Y. Huang, Environ. Res. 212 (2022) 113405, https://doi.org/10.1016/j.envres.2022.113405. doi: 10.1016/j.envres.2022.113405
-
[27]
J. Hu, B. Li, X. Li, T. Yang, X. Yang, J. Qu, Y. Cai, H. Yang, Z. Lin, Adv. Mater. 36 (2024) 2412070, https://doi.org/10.1002/adma.202412070. doi: 10.1002/adma.202412070
-
[28]
Q. Zhang, H. Gu, X. Wang, L. Li, J. Zhang, H. Zhang, Y.-F. Li, W.-L. Dai, Appl. Catal. B Environ. 298 (2021) 120632, https://doi.org/10.1016/j.apcatb.2021.120632. doi: 10.1016/j.apcatb.2021.120632
-
[29]
X. Dang, M. Xie, F. Dai, J. Guo, J. Liu, X. Lu, Adv. Mater. Interfaces 8 (2021) 2100151, https://doi.org/10.1002/admi.202100151. doi: 10.1002/admi.202100151
-
[30]
X. Liu, S. Kang, G. Yang, Z. Wang, G. Gao, M. Dou, H. Yang, R. Li, D. Li, J. Dou, Int. J. Hydrog. Energy 51 (2024) 410, https://doi.org/10.1016/j.ijhydene.2023.06.229. doi: 10.1016/j.ijhydene.2023.06.229
-
[31]
N. Li, L. Li, Y. Qiu, X. Liu, J. Zhang, Y. Gao, L. Ge, Nanoscale 16 (2024) 8151, https://doi.org/10.1039/D3NR06588J. doi: 10.1039/D3NR06588J
-
[32]
K. Chen, Y. Shi, P. Shu, Z. Luo, W. Shi, F. Guo, Chem. Eng. J. 454 (2023) 140053, https://doi.org/10.1016/j.cej.2022.140053. doi: 10.1016/j.cej.2022.140053
-
[33]
H. Wang, R. Zhao, H. Hu, X. Fan, D. Zhang, D. Wang, ACS Appl. Mater. Interfaces 12 (2020) 40176, https://doi.org/10.1021/acsami.0c01013. doi: 10.1021/acsami.0c01013
-
[34]
Y. Xue, Y. Guo, Z. Liang, H. Cui, J. Tian, J. Colloid Interface Sci. 556 (2019) 206, https://doi.org/10.1016/j.jcis.2019.08.067. doi: 10.1016/j.jcis.2019.08.067
-
[35]
C. Zhu, Y. Li, Y. Li, N. Yang, K. Wang, X. Guo, J. Alloys Compd. 1010 (2025) 177944, https://doi.org/10.1016/j.jallcom.2024.177944. doi: 10.1016/j.jallcom.2024.177944
-
[36]
H.-Y. Liu, C.-G. Niu, D.-W. Huang, C. Liang, H. Guo, Y.-Y. Yang, L. Li, Chem. Eng. J. 465 (2023) 143007, https://doi.org/10.1016/j.cej.2023.143007. doi: 10.1016/j.cej.2023.143007
-
[37]
Q.-Y. Tang, X.-L. Luo, S.-Y. Yang, Y.-H. Xu, Sep. Purif. Technol. 248 (2020) 117039, https://doi.org/10.1016/j.seppur.2020.117039. doi: 10.1016/j.seppur.2020.117039
-
[38]
Q. Li, S. He, L. Wang, M. Zhao, T. Guo, X. Ma, Z. Meng, Appl. Organomet. Chem. 38 (2024) e7344, https://doi.org/10.1002/aoc.7344. doi: 10.1002/aoc.7344
-
[39]
J. Zhang, Y. Lei, J. Jiang, S. Zhao, H. Yi, X. Tang, X. Huang, Y. Zhou, F. Gao, Renew. Energy 242 (2025) 122380, https://doi.org/10.1016/j.renene.2025.122380. doi: 10.1016/j.renene.2025.122380
-
[40]
H. Zhao, D. Wang, X. Xue, X. Zhu, D. Ye, Y. Yang, H. Wang, R. Chen, Q. Liao, J. Mater. Chem. A 12 (2024) 15693, https://doi.org/10.1039/D4TA02001D. doi: 10.1039/D4TA02001D
-
[41]
Y. Wang, M. Liu, C. Wu, J. Gao, M. Li, Z. Xing, Z. Li, W. Zhou, Small 18 (2022) 2202544, https://doi.org/10.1002/smll.202202544. doi: 10.1002/smll.202202544
-
[42]
O. Cavdar, M. Baluk, A. Malankowska, A. Żak, W. Lisowski, T. Klimczuk, A. Zaleska-Medynska, J. Colloid Interface Sci. 640 (2023) 578, https://doi.org/10.1016/j.jcis.2023.02.129. doi: 10.1016/j.jcis.2023.02.129
-
[43]
Z. Xiao, A. Yusuf, Y. Ren, G. Zheng Chen, C. Wang, J. He, Chem. Eng. J. 497 (2024) 154487, https://doi.org/10.1016/j.cej.2024.154487. doi: 10.1016/j.cej.2024.154487
-
[44]
M. Yu, S. Chang, L. Ma, X. Wu, J. Yan, Y. Ding, X. Zhang, S. A. C. Carabineiro, K. Lv, Sep. Purif. Technol. 354 (2025) 128695, https://doi.org/10.1016/j.seppur.2024.128695. doi: 10.1016/j.seppur.2024.128695
-
[45]
P. Tan, Z. Mao, Y. Li, J. Yu, L. Long, J. Colloid Interface Sci. 663 (2024) 992, https://doi.org/10.1016/j.jcis.2024.02.221. doi: 10.1016/j.jcis.2024.02.221
-
[46]
Y. Duan, Y. Wang, L. Gan, J. Meng, Y. Feng, K. Wang, K. Zhou, C. Wang, X. Han, X. Zhou, Adv. Energy Mater. 11 (2021) 2004001, https://doi.org/10.1002/aenm.202004001. doi: 10.1002/aenm.202004001
-
[47]
D. Liu, D. Chen, N. Li, Q. Xu, H. Li, J. He, J. Lu, Small 15 (2019) 1902291, https://doi.org/10.1002/smll.201902291. doi: 10.1002/smll.201902291
-
[48]
J. Li, X. Dong, Y. Sun, G. Jiang, Y. Chu, S. C. Lee, F. Dong, Appl. Catal. B Environ. 239 (2018) 187, https://doi.org/10.1016/j.apcatb.2018.08.019. doi: 10.1016/j.apcatb.2018.08.019
-
[49]
Z. Xiao, H. Do, A. Yusuf, H. Jia, H. Ma, S. Jiang, J. Li, Y. Sun, C. Wang, Y. Ren, G. Z. Chen, J. He, J. Hazard. Mater. 462 (2024) 132744, https://doi.org/10.1016/j.jhazmat.2023.132744. doi: 10.1016/j.jhazmat.2023.132744
-
[50]
W. Cui, L. Chen, J. Sheng, J. Li, H. Wang, X. Dong, Y. Zhou, Y. Sun, F. Dong, Appl. Catal. B Environ. 262 (2020) 118251, https://doi.org/10.1016/j.apcatb.2019.118251. doi: 10.1016/j.apcatb.2019.118251
-
[51]
G. Du, Q. Zhang, W. Xiao, Z. Yi, Q. Zheng, H. Zhao, Y. Zou, B. Li, Z. Huang, D. Wang, L. Zhu, J. Alloys Compd. 882 (2021) 160318, https://doi.org/10.1016/j.jallcom.2021.160318. doi: 10.1016/j.jallcom.2021.160318
-
[52]
K. Li, N. Kang, X. Li, Z. Wang, N. Wang, Y. Kuwahara, K. Lv, H. Yamashita, Appl. Catal. B Environ. Energy 355 (2024) 124163, https://doi.org/10.1016/j.apcatb.2024.124163. doi: 10.1016/j.apcatb.2024.124163
-
[53]
K. Li, W. Zhou, X. Li, Q. Li, S. A. C. Carabineiro, S. Zhang, J. Fan, K. Lv, J. Hazard. Mater. 442 (2023) 130040, https://doi.org/10.1016/j.jhazmat.2022.130040. doi: 10.1016/j.jhazmat.2022.130040
-
[54]
R. Zhang, Y. Cao, D. E. Doronkin, M. Ma, F. Dong, Y. Zhou, Chem. Eng. J. 454 (2023) 140084, https://doi.org/10.1016/j.cej.2022.140084. doi: 10.1016/j.cej.2022.140084
-
[55]
Y. Li, M. Gu, T. Shi, W. Cui, X. Zhang, F. Dong, J. Cheng, J. Fan, K. Lv, Appl. Catal. B Environ. 262 (2020) 118281, https://doi.org/10.1016/j.apcatb.2019.118281. doi: 10.1016/j.apcatb.2019.118281
-
[56]
J. Liao, W. Cui, J. Li, J. Sheng, H. Wang, X. Dong, P. Chen, G. Jiang, Z. Wang, F. Dong, Chem. Eng. J. 379 (2020) 122282, https://doi.org/10.1016/j.cej.2019.122282. doi: 10.1016/j.cej.2019.122282
-
[57]
K. Li, W. Cui, J. Li, Y. Sun, Y. Chu, G. Jiang, Y. Zhou, Y. Zhang, F. Dong, Chem. Eng. J. 378 (2019) 122184, https://doi.org/10.1016/j.cej.2019.122184. doi: 10.1016/j.cej.2019.122184
-
[58]
C. Zhang, Y. Xu, H. Bai, D. Li, L. Wei, C. Feng, Y. Huang, Z. Wang, X. Li, X. Cui, C. Hu, F. Wang, Nano Energy 121 (2024) 109197, https://doi.org/10.1016/j.nanoen.2023.109197. doi: 10.1016/j.nanoen.2023.109197
-
[59]
Y. Cao, R. Zhang, Q. Zheng, W. Cui, Y. Liu, K. Zheng, F. Dong, Y. Zhou, ACS Appl. Mater. Interfaces 12 (2020) 34432, https://doi.org/10.1021/acsami.0c09216. doi: 10.1021/acsami.0c09216
-
[60]
F. Chang, S. Zhao, Y. Lei, X. Wang, F. Dong, G. Zhu, Y. Kong, J. Colloid Interface Sci. 649 (2023) 713, https://doi.org/10.1016/j.jcis.2023.06.168. doi: 10.1016/j.jcis.2023.06.168
-
[61]
X. Zheng, Y. Song, Y. Liu, Y. Yang, D. Wu, Y. Yang, S. Feng, J. Li, W. Liu, Y. Shen, X. Tian, Coord. Chem. Rev. 475 (2023) 214898, https://doi.org/10.1016/j.ccr.2022.214898. doi: 10.1016/j.ccr.2022.214898
-
[62]
R. Janani, S. Sumathi, B. Gupta, A. R. M. Shaheer, S. Ganapathy, B. Neppolian, S. C. Roy, R. Channakrishnappa, B. Paul, S. Singh, J. Environ. Chem. Eng. 10 (2022) 107030, https://doi.org/10.1016/j.jece.2021.107030. doi: 10.1016/j.jece.2021.107030
-
[63]
F. Kang, C. Shi, Y. Zhu, M. Eqi, J. Shi, M. Teng, Z. Huang, C. Si, F. Jiang, J. Hu, J. Energy Chem. 79 (2023) 158167, https://doi.org/10.1016/j.jechem.2022.11.043 doi: 10.1016/j.jechem.2022.11.043
-
[64]
S. Li, C. Wang, M. Cai, F. Yang, Y. Liu, J. Chen, P. Zhang, X. Li, X. Chen, Chem. Eng. J. 428 (2022) 131158, https://doi.org/10.1016/j.cej.2021.131158. doi: 10.1016/j.cej.2021.131158
-
[65]
X. Zhang, X. Yuan, L. Jiang, J. Zhang, H. Yu, H. Wang, G. Zeng, Chem. Eng. J. 390 (2020) 124475, https://doi.org/10.1016/j.cej.2020.124475. doi: 10.1016/j.cej.2020.124475
-
[66]
Y. Liu, A. Deng, Y. Yin, J. Lin, Q. Li, Y. Sun, J. Zhang, S. Li, S. Yang, Y. Xu, H. He, S. Liu, S. Wang, Appl. Catal. B Environ. Energy 362 (2025) 124724, https://doi.org/10.1016/j.apcatb.2024.124724. doi: 10.1016/j.apcatb.2024.124724
-
[67]
Y. Sun, K. Lai, N. Li, Y. Gao, L. Ge, Appl. Catal. B Environ. Energy 357 (2024) 124302, https://doi.org/10.1016/j.apcatb.2024.124302. doi: 10.1016/j.apcatb.2024.124302
-
[68]
P. Li, X. Yan, S. Gao, R. Cao, Chem. Eng. J. 421 (2021) 129870, https://doi.org/10.1016/j.cej.2021.129870. doi: 10.1016/j.cej.2021.129870
-
[69]
N. Li, Y. Qiu, L. Li, J. Zhang, S. Xu, Y. Gao, L. Ge, Sep. Purif. Technol. 353 (2025) 128305, https://doi.org/10.1016/j.seppur.2024.128305. doi: 10.1016/j.seppur.2024.128305
-
[70]
N. Li, Y. Qiu, L. Li, J. Zhang, Y. Gao, L. Ge, Small 21 (2025) 2408057, https://doi.org/10.1002/smll.202408057. doi: 10.1002/smll.202408057
-
[71]
A. Chen, X. Yang, L. Shen, Y. Zheng, M. Yang, Small 20 (2024) 2309805, https://doi.org/10.1002/smll.202309805. doi: 10.1002/smll.202309805
-
[72]
C. Wang, X. Ma, Z. Fu, X. Hu, J. Fan, E. Liu, J. Colloid Interface Sci. 592 (2021) 66, https://doi.org/10.1016/j.jcis.2021.02.041. doi: 10.1016/j.jcis.2021.02.041
-
[73]
F. Xu, F. Zhao, X. Deng, J. Zhang, J. Zhang, C. Ai, J. Yu, H. García, Nat. Commun. 16 (2025) 6882, https://doi.org/10.1038/s41467-025-60961-5. doi: 10.1038/s41467-025-60961-5
-
[74]
J. Jin, H. Hu, M. Xu, Y. Yang, W. Jin, Z. Zhang, F. Dong, M. Shao, Y. Wan, J. Mater. Sci. : Mater. Electron. 35 (2024) 295, https://doi.org/10.1007/s10854-024-11963-4 doi: 10.1007/s10854-024-11963-4
-
[75]
J. Yang, Y. Lin, X. Yang, T. B. Ng, X. Ye, J. Lin, J. Hazard. Mater. 322 (2017) 525, https://doi.org/10.1016/j.jhazmat.2016.10.019. doi: 10.1016/j.jhazmat.2016.10.019
-
[76]
F. Chang, Z. Zhao, W. Bao, J. Wang, J. Zheng, Mol. Catal. 547 (2023) 113414, https://doi.org/10.1016/j.mcat.2023.113414. doi: 10.1016/j.mcat.2023.113414
-
[77]
F. Li, G. Liu, F. Liu, S. Yang, Chemosphere 324 (2023) 138277, https://doi.org/10.1016/j.chemosphere.2023.138277. doi: 10.1016/j.chemosphere.2023.138277
-
[78]
B. He, P. Xiao, S. Wan, J. Zhang, T. Chen, L. Zhang, J. Yu, Angew. Chem. Int. Ed. 62 (2023) e202313172, https://doi.org/10.1002/ange.202313172. doi: 10.1002/ange.202313172
-
[79]
Y. Sun, K. Lai, X. Shi, N. Li, Y. Gao, L. Ge, Appl. Catal. B Environ. Energy 365 (2025) 124907, https://doi.org/10.1016/j.apcatb.2024.124907. doi: 10.1016/j.apcatb.2024.124907
-
[80]
L. Guo, R. Li, J. Jiang, J.-J. Zou, W. Mi, J. Mater. Chem. A 9 (2021) 26266, https://doi.org/10.1039/D1TA07286B. doi: 10.1039/D1TA07286B
-
[81]
X. Fan, Z. Teng, L. Han, Y. Shen, X. Wang, W. Qu, J. Song, Z. Wang, H. Duan, Y. A. Wu, B. Liu, D. Zhang, Nat. Commun. 16 (2025) 4874, https://doi.org/10.1038/s41467-025-60043-6. doi: 10.1038/s41467-025-60043-6
-
[1]
-
扫一扫看文章
计量
- PDF下载量: 0
- 文章访问数: 22
- HTML全文浏览量: 2

下载: