MOF衍生的g-C3N4/ZnIn2S4 S型异质结:界面工程增强光催化NO转化

邱艳平 张佳桐 李林萍 高旸钦 李宁 戈磊

引用本文: 邱艳平, 张佳桐, 李林萍, 高旸钦, 李宁, 戈磊. MOF衍生的g-C3N4/ZnIn2S4 S型异质结:界面工程增强光催化NO转化[J]. 物理化学学报, 2026, 42(4): 100175. doi: 10.1016/j.actphy.2025.100175 shu
Citation:  Yanping Qiu, Jiatong Zhang, Linping Li, Yangqin Gao, Ning Li, Lei Ge. MOF-derived g-C3N4/ZnIn2S4 S-scheme heterojunction: interface-engineering enhanced photocatalytic NO conversion[J]. Acta Physico-Chimica Sinica, 2026, 42(4): 100175. doi: 10.1016/j.actphy.2025.100175 shu

MOF衍生的g-C3N4/ZnIn2S4 S型异质结:界面工程增强光催化NO转化

    通讯作者: wubian.good@163.com (李宁); Email: gelei08@sina.com (戈磊)
摘要: 为应对大气中日益严峻的氮氧化物(NOx)污染问题,亟需开发兼具高效性与高选择性的光催化剂。本研究构建了g-C3N4/ZnIn2S4 (CN/ZIS) S型异质结光催化剂,其中通过MOF衍生策略合成了具有中空管状形貌的ZnIn2S4,g-C3N4则作为高效电子转移平台。优化后的CN/ZIS-0.1在可见光照射下表现出显著提升的光催化性能,NO去除效率达67.29%,显著高于原始g-C3N4 (41.41%)和ZIS (27.8%);同时NO向硝酸盐的选择性转化率达到77.47%,亦明显优于g-C3N4 (49.01%)。材料表征结果表明,CN/ZIS-0.1不仅有更宽的光吸收范围,其独特结构还提供了更多反应位点。光电化学测试与DFT计算进一步证实,CN/ZIS界面形成的内建电场(BIEF)驱动光生电子向g-C3N4表面迁移、空穴向ZIS表面定向迁移,从而促进关键活性物种生成并增强NO吸附。本工作不仅证明了MOF衍生中空结构与二维半导体耦合构建S型异质结在NO光催化氧化中的潜力,还为开发高选择性NO光催化剂提供有效策略。

English

    1. [1]

      J. Zhao, K. Feng, S.-H. Liu, C.-W. Lin, S. Zhang, S. Li, W. Li, J. Chen, Chemosphere 249 (2020) 126095, https://doi.org/10.1016/j.chemosphere.2020.126095. doi: 10.1016/j.chemosphere.2020.126095

    2. [2]

      J. Luan, J. Liu, X. Huang, Z. Tan, H. Yu, Mol. Catal. 554 (2024) 113856, https://doi.org/10.1016/j.mcat.2024.113856. doi: 10.1016/j.mcat.2024.113856

    3. [3]

      Y. He, H. Li, J. Wu, Z. Liu, Y. Chen, W. Guo, Y. Wu, M. Fu, X. Liu, Appl. Surf. Sci. 604 (2022) 154641, https://doi.org/10.1016/j.apsusc.2022.154641. doi: 10.1016/j.apsusc.2022.154641

    4. [4]

      X. Xia, C. Xie, B. Xu, X. Ji, G. Gao, P. Yang, J. Ind. Eng. Chem. 105 (2022) 303, https://doi.org/10.1016/j.jiec.2021.09.033. doi: 10.1016/j.jiec.2021.09.033

    5. [5]

      Y. Zhang, Z. Hu, H. Zhang, H. Li, S. Yang, Adv. Funct. Mater. 33 (2023) 2303851, https://doi.org/10.1002/adfm.202303851. doi: 10.1002/adfm.202303851

    6. [6]

      F. Chang, C. Yang, J. Wang, B. Lei, S. Li, H. Kim, Sep. Purif. Technol. 266 (2021) 118237, https://doi.org/10.1016/j.seppur.2020.118237. doi: 10.1016/j.seppur.2020.118237

    7. [7]

      Z. Gu, M. Jin, X. Wang, R. Zhi, Z. Hou, J. Yang, H. Hao, S. Zhang, X. Wang, E. Zhou, S. Yin, Catalysts 13 (2023) 192, https://doi.org/10.3390/catal13010192. doi: 10.3390/catal13010192

    8. [8]

      B. Chen, X. Sun, Y. Hong, Y. Tian, E. Liu, J. Shi, X. Lin, F. Xia, Renew. Energy 237 (2024) 121747, https://doi.org/10.1016/j.renene.2024.121747. doi: 10.1016/j.renene.2024.121747

    9. [9]

      C. Li, X. Zhang, T. Song, Y. Tian, S. Wang, P. Yang, J. Environ. Chem. Eng. 12 (2024) 113396, https://doi.org/10.1016/j.jece.2024.113396. doi: 10.1016/j.jece.2024.113396

    10. [10]

      H. Bae, K. C. Bhamu, P. Mane, V. Burungale, N. Kumar, S. H. Lee, S. W. Ryu, S. G. Kang, J. S. Ha, Mater. Today Energy 40 (2024) 101484, https://doi.org/10.1016/j.mtener.2023.101484. doi: 10.1016/j.mtener.2023.101484

    11. [11]

      M. Bigdeli Tabar, H. Azimi, R. Yousefi, Appl. Surf. Sci. 622 (2023) 156912, https://doi.org/10.1016/j.apsusc.2023.156912. doi: 10.1016/j.apsusc.2023.156912

    12. [12]

      Z. Liu, Y. Bian, G. Dawson, J. Zhu, K. Dai, Chin. Chem. Lett. 36 (2025) 111272, https://doi.org/10.1016/j.cclet.2025.111272. doi: 10.1016/j.cclet.2025.111272

    13. [13]

      R. Sun, X. Wang, Y. Gao, Y. Yao, L. Xin, D. Wang, Y. Wang, Int. J. Hydrog. Energy 55 (2024) 635, https://doi.org/10.1016/j.ijhydene.2023.11.251. doi: 10.1016/j.ijhydene.2023.11.251

    14. [14]

      M. Gu, J. Zhang, I. V. Kurganskii, A. S. Poryvaev, M. V. Fedin, B Cheng, J. Yu, L. Zhang, Adv. Mater. 37 (2025) 2414803, https://doi.org/10.1002/adma.202414803.

    15. [15]

      L. Zhang, J. Zhang, J. Yu, H. García, Nat. Rev. Chem. 9 (2025) 328, https://doi.org/10.1038/s41570-025-00698-3. doi: 10.1038/s41570-025-00698-3

    16. [16]

      P. Li, Y. Cui, Z. Wang, G. Dawson, C. Shao, K. Dai, Acta Phys. Chim. Sin. 41 (2025) 100065, https://doi.org/10.1016/j.actphy.2025.100065. doi: 10.1016/j.actphy.2025.100065

    17. [17]

      L. Li, X. Dai, K. Gao, H. Yu, F. Chen, W. Wang, J. Ning, Y. Hu, Chem. Eng. J. 514 (2025) 163193, https://doi.org/10.1016/j.cej.2025.163193. doi: 10.1016/j.cej.2025.163193

    18. [18]

      T. Wang, X. Pan, M. He, L. Kang, W. Ma, Adv. Sci. 11 (2024) 2403771, https://doi.org/10.1002/advs.202403771. doi: 10.1002/advs.202403771

    19. [19]

      Y. Cai, F. Luo, Y. Guo, F. Guo, W. Shi, S. Yang, Molecules 28 (2023) 2142, https://doi.org/10.3390/molecules28052142. doi: 10.3390/molecules28052142

    20. [20]

      X. Deng, D. Wang, H. Li, W. Jiang, T. Zhou, Y. Wen, B. Yu, G. Che, L. Wang, J. Alloys Compd. 894 (2022) 162209, https://doi.org/10.1016/j.jallcom.2021.162209. doi: 10.1016/j.jallcom.2021.162209

    21. [21]

      F. Wang, S. Chen, J. Wu, W. Xiang, L. Duan, Ind. Eng. Chem. Res. 62 (2023) 15907, https://doi.org/10.1021/acs.iecr.3c02523. doi: 10.1021/acs.iecr.3c02523

    22. [22]

      B. Liu, K. Meng, B. Cheng, L. Wang, G. Liang, C. Bie, J. Mater. Sci. Technol. 231 (2025) 286, https://doi.org/10.1016/j.jmst.2025.02.013. doi: 10.1016/j.jmst.2025.02.013

    23. [23]

      Y. Liu, C. Chen, G. Dawson, J. Zhang, C. Shao, K. Dai, J. Mater. Sci. Technol. 233 (2025) 10, https://doi.org/10.1016/j.jmst.2024.12.094. doi: 10.1016/j.jmst.2024.12.094

    24. [24]

      M. Xu, X. Zhao, H. Jiang, S. Chen, P. Huo, J. Environ. Chem. Eng. 9 (2021) 106469, https://doi.org/10.1016/j.jece.2021.106469. doi: 10.1016/j.jece.2021.106469

    25. [25]

      S. Zang, X. Cai, Y. Zang, F. Jing, Y. Lu, S. Tang, F. Lin, L. Mo, Inorg. Chem. 63 (2024) 6546, https://doi.org/10.1021/acs.inorgchem.4c00645. doi: 10.1021/acs.inorgchem.4c00645

    26. [26]

      K. Qi, J. Jing, G. Dong, P. Li, Y. Huang, Environ. Res. 212 (2022) 113405, https://doi.org/10.1016/j.envres.2022.113405. doi: 10.1016/j.envres.2022.113405

    27. [27]

      J. Hu, B. Li, X. Li, T. Yang, X. Yang, J. Qu, Y. Cai, H. Yang, Z. Lin, Adv. Mater. 36 (2024) 2412070, https://doi.org/10.1002/adma.202412070. doi: 10.1002/adma.202412070

    28. [28]

      Q. Zhang, H. Gu, X. Wang, L. Li, J. Zhang, H. Zhang, Y.-F. Li, W.-L. Dai, Appl. Catal. B Environ. 298 (2021) 120632, https://doi.org/10.1016/j.apcatb.2021.120632. doi: 10.1016/j.apcatb.2021.120632

    29. [29]

      X. Dang, M. Xie, F. Dai, J. Guo, J. Liu, X. Lu, Adv. Mater. Interfaces 8 (2021) 2100151, https://doi.org/10.1002/admi.202100151. doi: 10.1002/admi.202100151

    30. [30]

      X. Liu, S. Kang, G. Yang, Z. Wang, G. Gao, M. Dou, H. Yang, R. Li, D. Li, J. Dou, Int. J. Hydrog. Energy 51 (2024) 410, https://doi.org/10.1016/j.ijhydene.2023.06.229. doi: 10.1016/j.ijhydene.2023.06.229

    31. [31]

      N. Li, L. Li, Y. Qiu, X. Liu, J. Zhang, Y. Gao, L. Ge, Nanoscale 16 (2024) 8151, https://doi.org/10.1039/D3NR06588J. doi: 10.1039/D3NR06588J

    32. [32]

      K. Chen, Y. Shi, P. Shu, Z. Luo, W. Shi, F. Guo, Chem. Eng. J. 454 (2023) 140053, https://doi.org/10.1016/j.cej.2022.140053. doi: 10.1016/j.cej.2022.140053

    33. [33]

      H. Wang, R. Zhao, H. Hu, X. Fan, D. Zhang, D. Wang, ACS Appl. Mater. Interfaces 12 (2020) 40176, https://doi.org/10.1021/acsami.0c01013. doi: 10.1021/acsami.0c01013

    34. [34]

      Y. Xue, Y. Guo, Z. Liang, H. Cui, J. Tian, J. Colloid Interface Sci. 556 (2019) 206, https://doi.org/10.1016/j.jcis.2019.08.067. doi: 10.1016/j.jcis.2019.08.067

    35. [35]

      C. Zhu, Y. Li, Y. Li, N. Yang, K. Wang, X. Guo, J. Alloys Compd. 1010 (2025) 177944, https://doi.org/10.1016/j.jallcom.2024.177944. doi: 10.1016/j.jallcom.2024.177944

    36. [36]

      H.-Y. Liu, C.-G. Niu, D.-W. Huang, C. Liang, H. Guo, Y.-Y. Yang, L. Li, Chem. Eng. J. 465 (2023) 143007, https://doi.org/10.1016/j.cej.2023.143007. doi: 10.1016/j.cej.2023.143007

    37. [37]

      Q.-Y. Tang, X.-L. Luo, S.-Y. Yang, Y.-H. Xu, Sep. Purif. Technol. 248 (2020) 117039, https://doi.org/10.1016/j.seppur.2020.117039. doi: 10.1016/j.seppur.2020.117039

    38. [38]

      Q. Li, S. He, L. Wang, M. Zhao, T. Guo, X. Ma, Z. Meng, Appl. Organomet. Chem. 38 (2024) e7344, https://doi.org/10.1002/aoc.7344. doi: 10.1002/aoc.7344

    39. [39]

      J. Zhang, Y. Lei, J. Jiang, S. Zhao, H. Yi, X. Tang, X. Huang, Y. Zhou, F. Gao, Renew. Energy 242 (2025) 122380, https://doi.org/10.1016/j.renene.2025.122380. doi: 10.1016/j.renene.2025.122380

    40. [40]

      H. Zhao, D. Wang, X. Xue, X. Zhu, D. Ye, Y. Yang, H. Wang, R. Chen, Q. Liao, J. Mater. Chem. A 12 (2024) 15693, https://doi.org/10.1039/D4TA02001D. doi: 10.1039/D4TA02001D

    41. [41]

      Y. Wang, M. Liu, C. Wu, J. Gao, M. Li, Z. Xing, Z. Li, W. Zhou, Small 18 (2022) 2202544, https://doi.org/10.1002/smll.202202544. doi: 10.1002/smll.202202544

    42. [42]

      O. Cavdar, M. Baluk, A. Malankowska, A. Żak, W. Lisowski, T. Klimczuk, A. Zaleska-Medynska, J. Colloid Interface Sci. 640 (2023) 578, https://doi.org/10.1016/j.jcis.2023.02.129. doi: 10.1016/j.jcis.2023.02.129

    43. [43]

      Z. Xiao, A. Yusuf, Y. Ren, G. Zheng Chen, C. Wang, J. He, Chem. Eng. J. 497 (2024) 154487, https://doi.org/10.1016/j.cej.2024.154487. doi: 10.1016/j.cej.2024.154487

    44. [44]

      M. Yu, S. Chang, L. Ma, X. Wu, J. Yan, Y. Ding, X. Zhang, S. A. C. Carabineiro, K. Lv, Sep. Purif. Technol. 354 (2025) 128695, https://doi.org/10.1016/j.seppur.2024.128695. doi: 10.1016/j.seppur.2024.128695

    45. [45]

      P. Tan, Z. Mao, Y. Li, J. Yu, L. Long, J. Colloid Interface Sci. 663 (2024) 992, https://doi.org/10.1016/j.jcis.2024.02.221. doi: 10.1016/j.jcis.2024.02.221

    46. [46]

      Y. Duan, Y. Wang, L. Gan, J. Meng, Y. Feng, K. Wang, K. Zhou, C. Wang, X. Han, X. Zhou, Adv. Energy Mater. 11 (2021) 2004001, https://doi.org/10.1002/aenm.202004001. doi: 10.1002/aenm.202004001

    47. [47]

      D. Liu, D. Chen, N. Li, Q. Xu, H. Li, J. He, J. Lu, Small 15 (2019) 1902291, https://doi.org/10.1002/smll.201902291. doi: 10.1002/smll.201902291

    48. [48]

      J. Li, X. Dong, Y. Sun, G. Jiang, Y. Chu, S. C. Lee, F. Dong, Appl. Catal. B Environ. 239 (2018) 187, https://doi.org/10.1016/j.apcatb.2018.08.019. doi: 10.1016/j.apcatb.2018.08.019

    49. [49]

      Z. Xiao, H. Do, A. Yusuf, H. Jia, H. Ma, S. Jiang, J. Li, Y. Sun, C. Wang, Y. Ren, G. Z. Chen, J. He, J. Hazard. Mater. 462 (2024) 132744, https://doi.org/10.1016/j.jhazmat.2023.132744. doi: 10.1016/j.jhazmat.2023.132744

    50. [50]

      W. Cui, L. Chen, J. Sheng, J. Li, H. Wang, X. Dong, Y. Zhou, Y. Sun, F. Dong, Appl. Catal. B Environ. 262 (2020) 118251, https://doi.org/10.1016/j.apcatb.2019.118251. doi: 10.1016/j.apcatb.2019.118251

    51. [51]

      G. Du, Q. Zhang, W. Xiao, Z. Yi, Q. Zheng, H. Zhao, Y. Zou, B. Li, Z. Huang, D. Wang, L. Zhu, J. Alloys Compd. 882 (2021) 160318, https://doi.org/10.1016/j.jallcom.2021.160318. doi: 10.1016/j.jallcom.2021.160318

    52. [52]

      K. Li, N. Kang, X. Li, Z. Wang, N. Wang, Y. Kuwahara, K. Lv, H. Yamashita, Appl. Catal. B Environ. Energy 355 (2024) 124163, https://doi.org/10.1016/j.apcatb.2024.124163. doi: 10.1016/j.apcatb.2024.124163

    53. [53]

      K. Li, W. Zhou, X. Li, Q. Li, S. A. C. Carabineiro, S. Zhang, J. Fan, K. Lv, J. Hazard. Mater. 442 (2023) 130040, https://doi.org/10.1016/j.jhazmat.2022.130040. doi: 10.1016/j.jhazmat.2022.130040

    54. [54]

      R. Zhang, Y. Cao, D. E. Doronkin, M. Ma, F. Dong, Y. Zhou, Chem. Eng. J. 454 (2023) 140084, https://doi.org/10.1016/j.cej.2022.140084. doi: 10.1016/j.cej.2022.140084

    55. [55]

      Y. Li, M. Gu, T. Shi, W. Cui, X. Zhang, F. Dong, J. Cheng, J. Fan, K. Lv, Appl. Catal. B Environ. 262 (2020) 118281, https://doi.org/10.1016/j.apcatb.2019.118281. doi: 10.1016/j.apcatb.2019.118281

    56. [56]

      J. Liao, W. Cui, J. Li, J. Sheng, H. Wang, X. Dong, P. Chen, G. Jiang, Z. Wang, F. Dong, Chem. Eng. J. 379 (2020) 122282, https://doi.org/10.1016/j.cej.2019.122282. doi: 10.1016/j.cej.2019.122282

    57. [57]

      K. Li, W. Cui, J. Li, Y. Sun, Y. Chu, G. Jiang, Y. Zhou, Y. Zhang, F. Dong, Chem. Eng. J. 378 (2019) 122184, https://doi.org/10.1016/j.cej.2019.122184. doi: 10.1016/j.cej.2019.122184

    58. [58]

      C. Zhang, Y. Xu, H. Bai, D. Li, L. Wei, C. Feng, Y. Huang, Z. Wang, X. Li, X. Cui, C. Hu, F. Wang, Nano Energy 121 (2024) 109197, https://doi.org/10.1016/j.nanoen.2023.109197. doi: 10.1016/j.nanoen.2023.109197

    59. [59]

      Y. Cao, R. Zhang, Q. Zheng, W. Cui, Y. Liu, K. Zheng, F. Dong, Y. Zhou, ACS Appl. Mater. Interfaces 12 (2020) 34432, https://doi.org/10.1021/acsami.0c09216. doi: 10.1021/acsami.0c09216

    60. [60]

      F. Chang, S. Zhao, Y. Lei, X. Wang, F. Dong, G. Zhu, Y. Kong, J. Colloid Interface Sci. 649 (2023) 713, https://doi.org/10.1016/j.jcis.2023.06.168. doi: 10.1016/j.jcis.2023.06.168

    61. [61]

      X. Zheng, Y. Song, Y. Liu, Y. Yang, D. Wu, Y. Yang, S. Feng, J. Li, W. Liu, Y. Shen, X. Tian, Coord. Chem. Rev. 475 (2023) 214898, https://doi.org/10.1016/j.ccr.2022.214898. doi: 10.1016/j.ccr.2022.214898

    62. [62]

      R. Janani, S. Sumathi, B. Gupta, A. R. M. Shaheer, S. Ganapathy, B. Neppolian, S. C. Roy, R. Channakrishnappa, B. Paul, S. Singh, J. Environ. Chem. Eng. 10 (2022) 107030, https://doi.org/10.1016/j.jece.2021.107030. doi: 10.1016/j.jece.2021.107030

    63. [63]

      F. Kang, C. Shi, Y. Zhu, M. Eqi, J. Shi, M. Teng, Z. Huang, C. Si, F. Jiang, J. Hu, J. Energy Chem. 79 (2023) 158167, https://doi.org/10.1016/j.jechem.2022.11.043 doi: 10.1016/j.jechem.2022.11.043

    64. [64]

      S. Li, C. Wang, M. Cai, F. Yang, Y. Liu, J. Chen, P. Zhang, X. Li, X. Chen, Chem. Eng. J. 428 (2022) 131158, https://doi.org/10.1016/j.cej.2021.131158. doi: 10.1016/j.cej.2021.131158

    65. [65]

      X. Zhang, X. Yuan, L. Jiang, J. Zhang, H. Yu, H. Wang, G. Zeng, Chem. Eng. J. 390 (2020) 124475, https://doi.org/10.1016/j.cej.2020.124475. doi: 10.1016/j.cej.2020.124475

    66. [66]

      Y. Liu, A. Deng, Y. Yin, J. Lin, Q. Li, Y. Sun, J. Zhang, S. Li, S. Yang, Y. Xu, H. He, S. Liu, S. Wang, Appl. Catal. B Environ. Energy 362 (2025) 124724, https://doi.org/10.1016/j.apcatb.2024.124724. doi: 10.1016/j.apcatb.2024.124724

    67. [67]

      Y. Sun, K. Lai, N. Li, Y. Gao, L. Ge, Appl. Catal. B Environ. Energy 357 (2024) 124302, https://doi.org/10.1016/j.apcatb.2024.124302. doi: 10.1016/j.apcatb.2024.124302

    68. [68]

      P. Li, X. Yan, S. Gao, R. Cao, Chem. Eng. J. 421 (2021) 129870, https://doi.org/10.1016/j.cej.2021.129870. doi: 10.1016/j.cej.2021.129870

    69. [69]

      N. Li, Y. Qiu, L. Li, J. Zhang, S. Xu, Y. Gao, L. Ge, Sep. Purif. Technol. 353 (2025) 128305, https://doi.org/10.1016/j.seppur.2024.128305. doi: 10.1016/j.seppur.2024.128305

    70. [70]

      N. Li, Y. Qiu, L. Li, J. Zhang, Y. Gao, L. Ge, Small 21 (2025) 2408057, https://doi.org/10.1002/smll.202408057. doi: 10.1002/smll.202408057

    71. [71]

      A. Chen, X. Yang, L. Shen, Y. Zheng, M. Yang, Small 20 (2024) 2309805, https://doi.org/10.1002/smll.202309805. doi: 10.1002/smll.202309805

    72. [72]

      C. Wang, X. Ma, Z. Fu, X. Hu, J. Fan, E. Liu, J. Colloid Interface Sci. 592 (2021) 66, https://doi.org/10.1016/j.jcis.2021.02.041. doi: 10.1016/j.jcis.2021.02.041

    73. [73]

      F. Xu, F. Zhao, X. Deng, J. Zhang, J. Zhang, C. Ai, J. Yu, H. García, Nat. Commun. 16 (2025) 6882, https://doi.org/10.1038/s41467-025-60961-5. doi: 10.1038/s41467-025-60961-5

    74. [74]

      J. Jin, H. Hu, M. Xu, Y. Yang, W. Jin, Z. Zhang, F. Dong, M. Shao, Y. Wan, J. Mater. Sci. : Mater. Electron. 35 (2024) 295, https://doi.org/10.1007/s10854-024-11963-4 doi: 10.1007/s10854-024-11963-4

    75. [75]

      J. Yang, Y. Lin, X. Yang, T. B. Ng, X. Ye, J. Lin, J. Hazard. Mater. 322 (2017) 525, https://doi.org/10.1016/j.jhazmat.2016.10.019. doi: 10.1016/j.jhazmat.2016.10.019

    76. [76]

      F. Chang, Z. Zhao, W. Bao, J. Wang, J. Zheng, Mol. Catal. 547 (2023) 113414, https://doi.org/10.1016/j.mcat.2023.113414. doi: 10.1016/j.mcat.2023.113414

    77. [77]

      F. Li, G. Liu, F. Liu, S. Yang, Chemosphere 324 (2023) 138277, https://doi.org/10.1016/j.chemosphere.2023.138277. doi: 10.1016/j.chemosphere.2023.138277

    78. [78]

      B. He, P. Xiao, S. Wan, J. Zhang, T. Chen, L. Zhang, J. Yu, Angew. Chem. Int. Ed. 62 (2023) e202313172, https://doi.org/10.1002/ange.202313172. doi: 10.1002/ange.202313172

    79. [79]

      Y. Sun, K. Lai, X. Shi, N. Li, Y. Gao, L. Ge, Appl. Catal. B Environ. Energy 365 (2025) 124907, https://doi.org/10.1016/j.apcatb.2024.124907. doi: 10.1016/j.apcatb.2024.124907

    80. [80]

      L. Guo, R. Li, J. Jiang, J.-J. Zou, W. Mi, J. Mater. Chem. A 9 (2021) 26266, https://doi.org/10.1039/D1TA07286B. doi: 10.1039/D1TA07286B

    81. [81]

      X. Fan, Z. Teng, L. Han, Y. Shen, X. Wang, W. Qu, J. Song, Z. Wang, H. Duan, Y. A. Wu, B. Liu, D. Zhang, Nat. Commun. 16 (2025) 4874, https://doi.org/10.1038/s41467-025-60043-6. doi: 10.1038/s41467-025-60043-6

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  22
  • HTML全文浏览量:  2
文章相关
  • 发布日期:  2026-04-15
  • 收稿日期:  2025-07-19
  • 接受日期:  2025-08-25
  • 修回日期:  2025-08-22
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章